<?xml version="1.0" encoding="UTF-8" ?>
<root>
<A0A384KE26 type="dict">
<id type="str">
8178</id>
<uniprot_acc type="str">
A0A384KE26</uniprot_acc>
<pdb_id type="str">
5VJ8</pdb_id>
<bmr_id type="str">
30284</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
127</start>
<end type="str">
131</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
28726410</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The extracellular loops are significantly disordered, due to sparse resonance assignments and the lack of restraints for this region of the protein&quot; ... &quot;The membrane-embedded position of the β-barrel agrees with the 1H/2H exchange data, placing the ring of positively charged Lys and Arg side chains at the extracellular membrane surface, and the two bands of aromatic residues near the membrane-water interfaces&quot; ... &quot;Basic Arg and Lys side chains of Ail (yellow sticks) are at the extracellular membrane surface&quot; ... &quot;The emerging data suggest that protein dynamics may be modulated by LPS. This is intriguing, especially in light of the functional importance of the extracellular loops of Ail and the fact that Y. pestis alters the molecular composition of its outer membrane depending on physiological conditions.&quot; ... &quot;The membrane composition, however, appears to have a marked effect on protein dynamics, with LPS enhancing conformational order and slowing down the 15N transverse relaxation rate.&quot;</statement>
<environment type="str">
nanodisc</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-104-108</color_data>
<comment type="str">
X-ray structure 3QRA has missing atoms in this region.</comment>
<accession type="str">
A0A384KE26</accession>
<gene type="str">
AIL</gene>
<organism type="str">
Yersinia pestis</organism>
<protname type="str">
Attachment invasion locus protein</protname>
<sequence type="str">
MVFMNKTLLVSSLIACLSIASVNVYAEGESSISIGYAQSRVKEDGYKLDKNPRGFNLKYRYEFNNDWGVIGSFAQTRRGFEESVDGFKLIDGDFKYYSVTAGPVFRINEYVSLYGLLGAGHGKAKFSSIFGQSESRSKTSLAYGAGLQFNPHPNFVIDASYEYSKLDDVKVGTWMLGAGYRF</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</A0A384KE26>
<E2FZM5 type="dict">
<id type="str">
8179</id>
<uniprot_acc type="str">
E2FZM5</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
0</start>
<end type="str">
0</end>
<category type="str">
MemMoRF</category>
<location type="str">
unknown</location>
<pubmed type="str">
26650755</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;we find that Mtb protein SocB lacks signatures of order and of structural elements when by itself in vitro. It appears to be an intrinsically disordered protein, based on CD, NMR, diffusion, and thermal melting experiments. However, in the presence of a synthetic phospholipid bilayer, SocB appears to become helical.&quot; ... &quot;Altogether, these findings suggest that by itself SocB is intrinsically disordered. Interestingly, SocB interacts with a synthetic phospholipid bilayer and becomes helical, which suggests that it may be membrane-associated.&quot;</statement>
<environment type="str">
MSP1D1:DPPC nanodisc</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
No data available about the exact regions.</comment>
<accession type="str">
E2FZM5</accession>
<gene type="str">
SOCB</gene>
<organism type="str">
Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)</organism>
<protname type="str">
Uncharacterized protein SocB</protname>
<sequence type="str">
MWTLKARKEHTGISGKPTARTDRHGSTRSGDSELQASARRFSRLPDRCGAQGVT</sequence>
<comments type="str">
None</comments>
<keywords type="str">
Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</E2FZM5>
<F1NHE9 type="dict">
<id type="str">
8180</id>
<uniprot_acc type="str">
F1NHE9</uniprot_acc>
<pdb_id type="str">
3SPC</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
61</start>
<end type="str">
69</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
21874019</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;On PIP(2) binding, a flexible expansion linker contracts to a compact helical structure&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-26-34</color_data>
<comment type="str">
</comment>
<accession type="str">
F1NHE9</accession>
<gene type="str">
KCNJ12</gene>
<organism type="str">
Gallus gallus</organism>
<protname type="str">
ATP-sensitive inward rectifier potassium channel 12</protname>
<sequence type="str">
MTAGRVNPYSIVSSEEDGLRLTTMPGINGFGNGKIHTRRKCRNRFVKKNGQCNVEFTNMDDKPQRYIADMFTTCVDIRWRYMLLLFSLAFLVSWLLFGLIFWLIALIHGDLENPGGDDTFKPCVLQVNGFVAAFLFSIETQTTIGYGFRCVTEECPLAVFMVVVQSIVGCIIDSFMIGAIMAKMARPKKRAQTLLFSHNAVVAMRDGKLCLMWRVGNLRKSHIVEAHVRAQLIKPRITEEGEYIPLDQIDIDVGFDKGLDRIFLVSPITILHEINEDSPLFGISRQDLETDDFEIVVILEGMVEATAMTTQARSSYLASEILWGHRFEPVLFEEKNQYKVDYSHFHKTYEVPSTPRCSAKDLVENKFLLPSTNSFCYENELAFMSRDEDEEDDDSRGLDDLSPDNRHEFDRLQATIALDQRSYRRESEI</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell membrane, Disulfide bond, Ion channel, Ion transport, Membrane, Potassium, Potassium transport, Reference proteome, Transmembrane, Transmembrane helix, Transport, Voltage-gated channel</keywords>
<tm_data type="str">
82-106;157-181</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-43-69;A-121-149;B-43-69;B-121-149;C-43-69;C-121-149;D-43-69;D-121-149</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</F1NHE9>
<O00168 type="dict">
<id type="str">
8181</id>
<uniprot_acc type="str">
O00168</uniprot_acc>
<pdb_id type="str">
2JO1</pdb_id>
<bmr_id type="str">
16168</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
80</start>
<end type="str">
90</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
17511473</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;A fourth helix (H4), containing the S63 and S68 consensus sites for phosphorylation by PKA and PKC, is separated from H3 by a flexible linker with significantly smaller values of the 1H/15N NOE, and significantly greater peak intensities.&quot; ... &quot;Helix H4 associates with the micelle surface, and is buried in the micelle to a similar extent as residues 39 to 45 at the end of the transmembrane segment.&quot; ... &quot;Fragment A (residues 1 to 50) includes helices H1 to H3, and fragment B (residues 51 to 72) includes the flexible linker and helix H4.&quot;</statement>
<environment type="str">
SDS</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-60-70</color_data>
<comment type="str">
</comment>
<accession type="str">
O00168</accession>
<gene type="str">
FXYD1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Phospholemman</protname>
<sequence type="str">
MASLGHILVFCVGLLTMAKAESPKEHDPFTYDYQSLQIGGLVIAGILFILGILIVLSRRCRCKFNQQQRTGEPDEEEGTFRSSIRRLSTRRR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell membrane, Glutathionylation, Ion transport, Lipoprotein, Membrane, Palmitate, Phosphoprotein, Potassium, Potassium transport, Reference proteome, Signal, Sodium, Sodium transport, Sodium/potassium transport, Transmembrane, Transmembrane helix, Transport</keywords>
<tm_data type="str">
36-56</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-16-36</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations</proof>
<mproof type="str">
calculations, papers, structures</mproof>
</O00168>
<O00499 type="dict">
<id type="str">
8183</id>
<uniprot_acc type="str">
O00499</uniprot_acc>
<pdb_id type="str">
2RND</pdb_id>
<bmr_id type="str">
11049</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
12</start>
<end type="str">
33</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
18658220</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Structure calculation, dynamic measurements, and a fast amide proton exchange confirmed the earlier proposed amphipathic character of the induced helix but also revealed a disordered N-terminal part of the amphipathic helix that is highly flexible and exposed to the solvent.&quot; ... &quot;The predicted N-terminal amphipathic helix-0 of the human Bin1/Amphiphysin II BAR domain comprises residues 1–33 (14,45). This part of the molecule is disordered in the absence of lipids and thereby unresolved in the crystal structure (12).&quot; ... &quot;Hence, the micelle environment generally stabilizes the helix, leading to a range of α-helicities of 40 to 50% (SDS1: 48%; SDS3: 50%; DPC: 40%) for residues 12–30 during the final simulated 20 ns.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-12-33</color_data>
<comment type="str">
</comment>
<accession type="str">
O00499</accession>
<gene type="str">
BIN1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Myc box-dependent-interacting protein 1</protname>
<sequence type="str">
MAEMGSKGVTAGKIASNVQKKLTRAQEKVLQKLGKADETKDEQFEQCVQNFNKQLTEGTRLQKDLRTYLASVKAMHEASKKLNECLQEVYEPDWPGRDEANKIAENNDLLWMDYHQKLVDQALLTMDTYLGQFPDIKSRIAKRGRKLVDYDSARHHYESLQTAKKKDEAKIAKPVSLLEKAAPQWCQGKLQAHLVAQTNLLRNQAEEELIKAQKVFEEMNVDLQEELPSLWNSRVGFYVNTFQSIAGLEENFHKEMSKLNQNLNDVLVGLEKQHGSNTFTVKAQPSDNAPAKGNKSPSPPDGSPAATPEIRVNHEPEPAGGATPGATLPKSPSQLRKGPPVPPPPKHTPSKEVKQEQILSLFEDTFVPEISVTTPSQFEAPGPFSEQASLLDLDFDPLPPVTSPVKAPTPSGQSIPWDLWEPTESPAGSLPSGEPSAAEGTFAVSWPSQTAEPGPAQPAEASEVAGGTQPAAGAQEPGETAASEAASSSLPAVVVETFPATVNGTVEGGSGAGRLDLPPGFMFKVQAQHDYTATDTDELQLKAGDVVLVIPFQNPEEQDEGWLMGVKESDWNQHKELEKCRGVFPENFTERVP</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Cell membrane, Coiled coil, Cytoplasm, Developmental protein, Differentiation, Disease mutation, Endocytosis, Endosome, Host-virus interaction, Membrane, Nucleus, Phosphoprotein, Reference proteome, SH3 domain</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
PFAM, calculations, papers</proof>
<mproof type="str">
calculations, papers</mproof>
</O00499>
<O39928 type="dict">
<id type="str">
8184</id>
<uniprot_acc type="str">
O39928</uniprot_acc>
<pdb_id type="str">
2M6X</pdb_id>
<bmr_id type="str">
19162</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
780</start>
<end type="str">
786</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
23739335;20727850;20667830</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The cytosolic loop 33–39 at the membrane interface contains the fully conserved dibasic motif shown to be crucial for infectivity in vivo as well as ion channel activity and function of the protein in virus release (7, 10, 11, 15). The conserved hydrophobic nature of segment 36–39 is consistent with its location at the hydrophilic-hydrophobic membrane interface (Figs. 5 and ​and6,6, C and D).&quot;</statement>
<environment type="str">
DPC, monomer</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-33-39;B-33-39;C-33-39;D-33-39;E-33-39;F-33-39</color_data>
<comment type="str">
780-786: oligomer: helix, monomer: loop</comment>
<accession type="str">
O39928</accession>
<gene type="str">
NA</gene>
<organism type="str">
Hepatitis C virus genotype 5a (isolate EUH1480)</organism>
<protname type="str">
Genome polyprotein</protname>
<sequence type="str">
MSTNPKPQRKTKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPKLGVRATRKNSERSQPRGRRQPIPKARRPTGRSWGQPGYPWPLYANEGLGWAGWLLSPRSSRPNWGPNDPRRKSPNLGRVIHTLTCGFPHLMGYIPLVGGPVGGVSRALAHGVKVLEDGINYATGNLPGCPFSIFVLALLWCLTVPASAVPYRNASGVYHVTNDCPNSSIVYEADNLILHAPGCVPCVLEDNVSRCWVQITPTLSAPSFGAVTALLRRAVDYLAGGAAFCSALYVGDACGALSLVGQMFTYKPRQHTTVQDCNCSIYSGHITGHRMAWDMMMKWSPTTALLMAQLLRIPQVVIDIIAGGHWGVLLAAAYFASTANWAKVILVLFLFAGVDGRTHTVGGTVGQGLKSLTSFFNPGPQRQLQFVNTNGSWHINSTALNCNDSLQTGFIAGLMYAHKFNSSGCPERMSSCRPLAAFDQGWGTISYATISGPSDDKPYCWHYPPRPCGVVPARDVCGPVYCFTPSPVVVGTTDRRGCPTYNWGSNETDILLLNNIRPPAGNWFGCTWMNSTGFVKNCGAPPCNLGPTGNNSLKCPTDCFRKHPDATYTRCGSGPWLTPRCLVHYPYRLWHYPCTVNYTIFKVRMFIGGLEHRLEAACNWTYGERCDLEDRDRAELSPLLHTTTQWAILPCSFTPTPALSTGLIHLHQNIVDTQYLYGLSSSIVSWAVKWEYIMLVFLLLADARICTCLLILLLICQAEATCKNVIVLNAAAAAGNHGFFWGLLVVCLAWHVKGRLVPGATYLCLGVWPLLLVRLLRPHRALALDSSDGGTVGCLVLIVLTIFTLTPGYKKKVVLVMWWLQYFIARVEAIIHVWVPPLQVKGGRDAVIMLTCLFHPALGFEITKILFGILGPLYLLQHSLTKVPYFLRARALLRLCLLAKHLVYGKYVQAALLHLGRLTGTYIYDHLAPMKDWAASGLRELTVATEPIVFSAMETKVITWGADTAACGNILAVLPVSARRGREIFLGPADDIKTSGWRLLAPITAYAQQTRGVLGAIVLSLTGRDKNEAEGEVQFLSTATQTFLGICINGVMWTLFHGAGSKTLAGPKGPVVQMYTNVDKDLVGWPSPPGKGSLTRCTCGSADLYLVTRHADVIPARRRGDTRASLLSPRPISYLKGSSGGPIMCPSGHVVGVFRAAVCTRGVAKALEFVPVENLETTMRSPVFTDNSTPPAVPHEFQVGHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATFGFGAYMSRAYGVDPNIRTGVRTVTTGAGITYSTYGKFFADGGCSGGAYDVIICDECHSQDATTILGIGTVLDQAETAGARLVVLATAIPPGSVTTPHPNIEEVALPSEGEIPFYGRAIPLVLIKGGRHLIFCHSKKKCDELAKQLTSLGVNAVAYYRGLDVAVIPATGDVVVCSTDALMTGFTGDFDSVIDCNSAVTQTVDFSLDPTFTIETTTVPQDAVSRSQRRGRTGRGRHGIYRYVSSGERPSGIFDSVVLCECYDAGCAWYDLTPAETTVRLRAYLNTPGLPVCQEHLEFWEGVFTGLTNIDAHMLSQAKQGGENFPYLVAYQATVCVRAKAPPPSWDTMWKCMICLKPTLTGPTPLLYRLGAVQNEITLTHPITKYIMACMSADLEVITSTWVLVGGVVAALAAYCLTVGSVAIVGRIILSGRPAITPDREVLYQQFDEMEECSASLPYVDEARAIAGQFKEKVLGLIGTAGQKAETLKPAATSMWSKAEQFWAKHMWNFVSGIQYLAGLSTLPGNPAVATLMSFTAAVTSPLTTHQTLLFNILGGWVASQIAPPTAATAFVVSGMAGAAVGNIGLGRVLIDILAGYGTGVAGALVAFKIMCGERPTAEELVNLLPSILCPGALVVGVICAAVLRRHIGPGEGAVQWMNRLIAFASRGNHGSPTHYVPETDASAKVTQLLSSLTVTSLLKRLHTWIGEDYSTPCDGTWLRAIWDWVCTALTDFKAWLQAKLLPQLPGVPFFSCQKGYKGVWRGDGVNSTKCPCGATISGHVKNGTMRIVGPKLCSNTWQGTFPINATTTGPSVPAPAPNYKFALWRVGAADYAEVRRVGDYHYITGVTQDNLKCPCQVPSPEFFTELDGVRIHRFAPPCNPLLREEVTFSVGLHSYVVGSQLPCEPEPDVTVLTSMLSDPAHITAETAKRRLNRGSPPSLANSSASQLSAPSLKATCTIQGHHPDADLIKANLLWRQCMGGNITRVEAENKVEILDCFKPLKEEEDDREISVSADCFKKGPAFPPALPVWARPGYDPPLLETWKRPDYDPPQVWGCPIPPAGPPPVPLPRRKRKPMELSDSTVSQVMADLADARFKVDTPSIEGQDSALGTSSQHDSGPEEKRDDNSDAASYSSMPPLEGEPGDPDLSSGSWSTVSGEDNVVCCSMSYTWTGALITPCSAEEEKLPINPLSNTLLRHHNLVYSTSSRSAGLRQKKVTFDRLQVLDDHYREVVDEMKRLASKVKARLLPLEEACGLTPPHSARSKYGYGAKEVRSLDKKALKHIEGVWQDLLDDSDTPLPTTIMAKNEVFAVEPSKGGKKPARLIVYPDLGVRVCEKRALYDVAQKLPTALMGPSYGFQYSPAQRVDFLLKAWKSKKIPMAFSYDTRCFDSTITEHDIMTEESIYQSCDLQPEARVAIRSLTQRLYCGGPMYNSKGQQCGYRRCRASGVFTTSMGNTMTCYIKALASCRAAKLRDCTLLVCGDDLVAICESQGTHEDEASLRAFTEAMTRYSAPPGDPPVPAYDLELVTSCSSNVSVARDASGNRIYYLTRDPQVPLAKAAWETAKHSPVNSWLGNIIMYAPTLWARIVLMTHFFSVLQSQEQLEKTLAFEMYGSVYSVTPLDLPAIIQRLHGLSAFSLHSYSPSEINRVASCLRKLGVPPLRAWRHRARAVRAKLIAQGGRAAICGIYLFNWAVKTKRKLTPLADADRLDLSSWFTVGAGGGDIYHSMSRARPRNLLLCLLLLSVGVGIFLLPAR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Activation of host autophagy by virus, Apoptosis, ATP-binding, Capsid protein, Clathrin-mediated endocytosis of virus by host, Disulfide bond, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, G1/S host cell cycle checkpoint dysregulation by virus, Glycoprotein, Helicase, Host cell membrane, Host cytoplasm, Host endoplasmic reticulum, Host lipid droplet, Host membrane, Host mitochondrion, Host nucleus, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host MAVS by virus, Inhibition of host RLR pathway by virus, Inhibition of host STAT1 by virus, Inhibition of host TRAFs by virus, Interferon antiviral system evasion, Ion channel, Ion transport, Lipoprotein, Membrane, Metal-binding, Modulation of host cell cycle by virus, Multifunctional enzyme, Nucleotide-binding, Nucleotidyltransferase, Oncogene, Palmitate, Phosphoprotein, Protease, Ribonucleoprotein, RNA-binding, RNA-directed RNA polymerase, Secreted, Serine protease, SH3-binding, Thiol protease, Transcription, Transcription regulation, Transferase, Transmembrane, Transmembrane helix, Transport, Ubl conjugation, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral ion channel, Viral nucleoprotein, Viral penetration into host cytoplasm, Viral RNA replication, Virion, Virus endocytosis by host, Virus entry into host cell, Zinc</keywords>
<tm_data type="str">
169-189;359-379;727-747;759-779;784-804;815-835;883-903;930-950;1659-1679;1807-1827;1830-1850;1852-1872;1883-1903;2994-3014</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations</proof>
<mproof type="str">
papers</mproof>
</O39928>
<O75324 type="dict">
<id type="str">
8186</id>
<uniprot_acc type="str">
O75324</uniprot_acc>
<pdb_id type="str">
1ZZA</pdb_id>
<bmr_id type="str">
6715</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
34</start>
<end type="str">
45</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
16246365</pubmed>
<doi type="str">
</doi>
<statement type="str">
The organotin-binding site (Cys32 and Cys34) and the flanking putative 14-3-3ζ binding domain (residues 39–45) are located at the membrane interface and are accessible for binding interactions.&quot;</statement>
<environment type="str">
SDS</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-63-81</color_data>
<comment type="str">
This disordered region is ordered and helical on the surface of SDS micelle.</comment>
<accession type="str">
O75324</accession>
<gene type="str">
SNN</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Stannin</protname>
<sequence type="str">
MSIMDHSPTTGVVTVIVILIAIAALGALILGCWCYLRLQRISQSEDEESIVGDGETKEPFLLVQYSAKGPCVERKAKLMTPNGPEVHG</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Membrane, Mitochondrion, Mitochondrion outer membrane, Phosphoprotein, Polymorphism, Reference proteome, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
11-31</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-13-33</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
calculations, papers</mproof>
</O75324>
<O88339 type="dict">
<id type="str">
8187</id>
<uniprot_acc type="str">
O88339</uniprot_acc>
<pdb_id type="str">
1H0A</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
3</start>
<end type="str">
15</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
12353027</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;We have discovered that formation of an amphipathic alpha-helix in epsin is coupled to PtdIns(4,5)P(2) binding.&quot; ... &quot;This helix is orientated such that it has the potential to interact with the membrane.&quot; ... &quot;Mutants of residue L6 to E, Q, H and W showed less binding to liposomes, implying a role for helix 0 in membrane interactions&quot; ... &quot;Compared with an earlier structure of this domain solved in the absence of a lipid head group14 (Fig. 2a, middle structure), a new helix became ordered at the N-terminus, which we have named ‘helix zero’.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-3-15</color_data>
<comment type="str">
</comment>
<accession type="str">
O88339</accession>
<gene type="str">
EPN1</gene>
<organism type="str">
Rattus norvegicus</organism>
<protname type="str">
Epsin-1</protname>
<sequence type="str">
MSTSSLRRQMKNIVHNYSEAEIKVREATSNDPWGPSSSLMSEIADLTYNVVAFSEIMSMIWKRLNDHGKNWRHVYKAMTLMEYLIKTGSERVSQQCKENMYAVQTLKDFQYVDRDGKDQGVNVREKAKQLVALLRDEDRLREERAHALKTKEKLAQTATASSAAVGSGPPPEAEQAWPQSSGEEELQLQLALAMSKEEADQPPSCGPEDDVQLQLALSLSREEHDKEERIRRGDDLRLQMAIEESKRETGGKEESSLMDLADVFTTPAPPQASDPWGGPASVPTAVPVAAAASDPWGAPAVPPAADPWGGAAPTPASGDPWRPAAPTGPSVDPWGGTPAPAAGEGPTSDPWGSADGGAPVSGPPSSDPWAPAPAFSDPWGGSPAKPSSNGTAVGGFDTEPDEFSDFDRLRTALPTSGSSTGELELLAGEVPARSPGAFDMSGVGGSLAESVGSPPPAATPTPTPPTRKTPESFLGPNAALVDLDSLVSRPGPTPPGAKASNPFLPSGAPATGPSVTNPFQPAPPATLTLNQLRLSPVPPVPGAPPTYISPLGGGPGLPPMMPPGPPAPNTNPFLL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell membrane, Coated pit, Cytoplasm, Endocytosis, Lipid-binding, Membrane, Methylation, Nucleus, Phosphoprotein, Reference proteome, Repeat, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</O88339>
<P00533 type="dict">
<id type="str">
8194</id>
<uniprot_acc type="str">
P00533</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
676</start>
<end type="str">
686</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
25779975</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Our simulations reveal that models of the TM helix and a short 20 residue JM regions of all 58 known human RTKs are able to induce bilayer reorganizations in the form of clustering of PIP2 and PS lipid molecules into shells around the JM region. Selectivity for certain lipid species was evident, with PIP2 found to have the greatest propensity to cluster around the JM regions of all receptors.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P00533</accession>
<gene type="str">
EGFR</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Epidermal growth factor receptor</protname>
<sequence type="str">
MRPSGTAGAALLALLAALCPASRALEEKKVCQGTSNKLTQLGTFEDHFLSLQRMFNNCEVVLGNLEITYVQRNYDLSFLKTIQEVAGYVLIALNTVERIPLENLQIIRGNMYYENSYALAVLSNYDANKTGLKELPMRNLQEILHGAVRFSNNPALCNVESIQWRDIVSSDFLSNMSMDFQNHLGSCQKCDPSCPNGSCWGAGEENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRESDCLVCRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSFGATCVKKCPRNYVVTDHGSCVRACGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEFKDSLSINATNIKHFKNCTSISGDLHILPVAFRGDSFTHTPPLDPQELDILKTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRTKQHGQFSLAVVSLNITSLGLRSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRGENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCNLLEGEPREFVENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVMGENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPSIATGMVGALLLLLVVALGIGLFMRRRHIVRKRTLRRLLQERELVEPLTPSGEAPNQALLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPFGCLLDYVREHKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAARNVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWSYGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYMIMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYRALMDEEDMDDVVDADEYLIPQQGFFSSPSTSRTPLLSSLSATSNNSTVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTEDSIDDTFLPVPEYINQSVPKRPAGSVQNPVYHNQPLNPAPSRDPHYQDPHSTAVGNPEYLNTVQPTCVNSTFDSPAHWAQKGSHQISLDNPDYQQDFFPKEAKPNGIFKGSTAENAEYLRVAPQSSEFIGA</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, ATP-binding, Cell membrane, Developmental protein, Direct protein sequencing, Disease mutation, Disulfide bond, Endoplasmic reticulum, Endosome, Glycoprotein, Golgi apparatus, Host cell receptor for virus entry, Host-virus interaction, Isopeptide bond, Kinase, Lipoprotein, Membrane, Methylation, Nucleotide-binding, Nucleus, Palmitate, Phosphoprotein, Polymorphism, Proto-oncogene, Receptor, Reference proteome, Repeat, Secreted, Signal, Transferase, Transmembrane, Transmembrane helix, Tyrosine-protein kinase, Ubl conjugation</keywords>
<tm_data type="str">
646-668</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations, papers</proof>
<mproof type="str">
calculations, papers, structures</mproof>
</P00533>
<P01501 type="dict">
<id type="str">
8195</id>
<uniprot_acc type="str">
P01501</uniprot_acc>
<pdb_id type="str">
6DST</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
44</start>
<end type="str">
69</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
26561987</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The C-terminal PLP peptide transitioned from a random coil to an α-helix in the presence of trifluoroethanol.&quot; ... &quot;Both melittin and the PLP peptide have basic residues near their C-terminus and can form amphipathic helices that interact with lipid membranes.&quot;</statement>
<environment type="str">
TFE</environment>
<tmp_category type="str">
tm</tmp_category>
<color_data type="str">
A-1-26</color_data>
<comment type="str">
</comment>
<accession type="str">
P01501</accession>
<gene type="str">
MELT</gene>
<organism type="str">
Apis mellifera</organism>
<protname type="str">
Melittin</protname>
<sequence type="str">
MKFLVNVALVFMVVYISYIYAAPEPEPAPEPEAEADAEADPEAGIGAVLKVLTTGLPALISWIKRKRQQG</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Allergen, Amidation, Antimicrobial, Cytolysis, Direct protein sequencing, Formylation, Hemolysis, Ion transport, Membrane, Pharmaceutical, Porin, Reference proteome, Secreted, Signal, Target cell membrane, Target membrane, Toxin, Transmembrane, Transport</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P01501>
<P01730 type="dict">
<id type="str">
8196</id>
<uniprot_acc type="str">
P01730</uniprot_acc>
<pdb_id type="str">
2KLU</pdb_id>
<bmr_id type="str">
16853</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
428</start>
<end type="str">
438</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19781520</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;In summary, the structure of the transmembrane and cytoplasmic domains of CD4 can be described by a very stable and rigid transmembrane α-helix (372–395) and a second cytoplasmic α-helix (403–413), which is reasonably stable even at 45 °C supported by helix-type NOE patterns, H/D exchange experiments, and heteronuclear NOE values. Obviously, the amphipathic character of the helix tethers the structure to the micellar surface. Notably, the region in HIV-1 VpU, which is responsible for CD4 binding, also features a long amphipathic helix [53], [54].&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-40-50</color_data>
<comment type="str">
</comment>
<accession type="str">
P01730</accession>
<gene type="str">
CD4</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
T-cell surface glycoprotein CD4</protname>
<sequence type="str">
MNRGVPFRHLLLVLQLALLPAATQGKKVVLGKKGDTVELTCTASQKKSIQFHWKNSNQIKILGNQGSFLTKGPSKLNDRADSRRSLWDQGNFPLIIKNLKIEDSDTYICEVEDQKEEVQLLVFGLTANSDTHLLQGQSLTLTLESPPGSSPSVQCRSPRGKNIQGGKTLSVSQLELQDSGTWTCTVLQNQKKVEFKIDIVVLAFQKASSIVYKKEGEQVEFSFPLAFTVEKLTGSGELWWQAERASSSKSWITFDLKNKEVSVKRVTQDPKLQMGKKLPLHLTLPQALPQYAGSGNLTLALEAKTGKLHQEVNLVVMRATQLQKNLTCEVWGPTSPKLMLSLKLENKEAKVSKREKAVWVLNPEAGMWQCLLSDSGQVLLESNIKVLPTWSTPVQPMALIVLGGVAGLLLFIGLGIFFCVRCRHRRRQAERMSQIKRLLSEKKTCQCPHRFQKTCSPI</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Adaptive immunity, Cell membrane, Direct protein sequencing, Disulfide bond, Glycoprotein, Host cell receptor for virus entry, Host-virus interaction, Immunity, Immunoglobulin domain, Lipoprotein, Membrane, Palmitate, Phosphoprotein, Polymorphism, Receptor, Reference proteome, Repeat, Signal, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
397-418</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
A-9-30</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, DIBS, MFIB</proof>
<mproof type="str">
calculations, papers</mproof>
</P01730>
<P02945 type="dict">
<id type="str">
8198</id>
<uniprot_acc type="str">
P02945</uniprot_acc>
<pdb_id type="str">
1BHB</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
78</start>
<end type="str">
80</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
8307023</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;In micelles, the second a helix is terminated by C-cap Gly63, adopting a conformation characteristic of a left-handed helix. Resi- dues Gly65 to Thr67 form the turn of a right-handed helix. In the isotropic medium of the organic mixture, the C-terminal region of residues 65-71 lacks an ordered structure.&quot; ... &quot;side-chain conformations in the regions of resi- dues 8-32 (in both milieus), and 42-64 (organic mixture) and 39 -62 (micelles), with well-defined a-helical backbone structure&quot; ... &quot;Thus, in contrast to the isotropic organic mix- ture, the water-detergent interface induces the formation of the helical structure in this cross-linking region, while the relative orientation of this helix toward the next transmem- brane segment is stipulated by the sequence of the protein,&quot;</statement>
<environment type="str">
methanol-chloroform</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-65-67</color_data>
<comment type="str">
</comment>
<accession type="str">
P02945</accession>
<gene type="str">
BOP</gene>
<organism type="str">
Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1)</organism>
<protname type="str">
Bacteriorhodopsin</protname>
<sequence type="str">
MLELLPTAVEGVSQAQITGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFYAITTLVPAIAFTMYLSMLLGYGLTMVPFGGEQNPIYWARYADWLFTTPLLLLDLALLVDADQGTILALVGADGIMIGTGLVGALTKVYSYRFVWWAISTAAMLYILYVLFFGFTSKAESMRPEVASTFKVLRNVTVVLWSAYPVVWLIGSEGAGIVPLNIETLLFMVLDVSAKVGFGLILLRSRAIFGEAEAPEPSAGDGAAATSD</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell membrane, Chromophore, Direct protein sequencing, Hydrogen ion transport, Ion transport, Membrane, Photoreceptor protein, Pyrrolidone carboxylic acid, Receptor, Reference proteome, Retinal protein, Sensory transduction, Transmembrane, Transmembrane helix, Transport</keywords>
<tm_data type="str">
23-42;57-75;93-109;121-140;148-167;186-204;217-236</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-10-29;A-44-62;A-80-96;A-108-127;A-135-154;A-173-191;A-204-223</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P02945>
<P04156 type="dict">
<id type="str">
8199</id>
<uniprot_acc type="str">
P04156</uniprot_acc>
<pdb_id type="str">
2LBG</pdb_id>
<bmr_id type="str">
17558</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
110</start>
<end type="str">
136</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
22128151</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The CHR adopts a curved α-helical conformation in the presence of DPC micelles.&quot; ... &quot;But after the addition of the first aliquot of DPC, two sets of resonances were observed at a 1:1 ratio where one set corresponded to the α-helical structure of the CHR peptide, and the second to an unknown conformation ...&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-1-27</color_data>
<comment type="str">
</comment>
<accession type="str">
P04156</accession>
<gene type="str">
PRNP</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Major prion protein</protname>
<sequence type="str">
MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRYPPQGGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQGGGTHSQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDEYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQRGSSMVLFSSPPVILLISFLIFLIVG</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative initiation, Amyloid, Amyloidosis, Cell cycle, Cell membrane, Copper, Direct protein sequencing, Disease mutation, Disulfide bond, Glycoprotein, Golgi apparatus, GPI-anchor, Growth arrest, Lipoprotein, Membrane, Metal-binding, Polymorphism, Prion, Reference proteome, Repeat, Signal, Zinc</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
papers</mproof>
</P04156>
<P04370-5 type="dict">
<id type="str">
8205</id>
<uniprot_acc type="str">
P04370-5</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
142</start>
<end type="str">
154</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
28380689</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The classic MBP is intrinsically disordered in aqueous solution but has three distinct α‐helical regions that form transiently and are stabilized by membrane association, representing molecular recognition fragments (α‐MoRFS)&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P04370-5</accession>
<gene type="str">
NA</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
Isoform 5 of Myelin basic protein</protname>
<sequence type="str">
MASQKRPSQRSKYLATASTMDHARHGFLPRHRDTGILDSIGRFFSGDRGAPKRGSGKDSHTRTTHYGSLPQKSQHGRTQDENPVVHFFKNIVTPRTPPPSQGKGRGLSLSRFSWGAEGQKPGFGYGGRASDYKSAHKGFKGAYDAQGTLSKIFKLGGRDSRSGSPMARR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Autoimmune encephalomyelitis, Cell membrane, Citrullination, Cytoplasm, Direct protein sequencing, Membrane, Methylation, Nucleus, Phosphoprotein, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
calculations, papers</mproof>
</P04370-5>
<P04624 type="dict">
<id type="str">
8207</id>
<uniprot_acc type="str">
P04624</uniprot_acc>
<pdb_id type="str">
1JAV</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
665</start>
<end type="str">
683</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
11583156</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The helical structure of gp41W in membrane-mimetic DPC micelles described here confirms the previous suggestion that this sequence forms a helix when interacting with phospholipid bilayers… gp41W inserts perpendicular to the bilayer normal, near the membrane interfacial region&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-1-19</color_data>
<comment type="str">
</comment>
<accession type="str">
P04624</accession>
<gene type="str">
ENV</gene>
<organism type="str">
Human immunodeficiency virus type 1 group M subtype B (isolate HXB3)</organism>
<protname type="str">
Envelope glycoprotein gp160</protname>
<sequence type="str">
MRVKEKYQHLWRWGWRWGTMLLGMLMICSATEKLWVTVYYGVPVWKEATTTLFCASDAKAYDTEVHNVWATHAGVPTDPNPQEVVLVNVTENFNMWKNDMVEQMHEDIISLWDQSLKPCVKLTPLCVSLKCTDLKNDTNTNSSSGRMIMEKGEIKNCSFNISTSIRGKVQKEYAFFYKLDIIPIDNDTTSYTLTSCNTSVITQACPKVSFEPIPIHYCAPAGFAILKCNNKTFNGTGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSVNFTDNAKTIIVQLNTSVEINCTRPNNNTRKKIRIQRGPGRAFVTIGKIGNMRQAHCNISRAKWNATLKQIASKLREQFGNNKTIIFKQSSGGDPEIVTHSFNCGGEFFYCNSTQLFNSTWFNSTWSTEGSNNTEGSDTITLPCRIKQFINMWQEVGKAMYAPPISGQIRCSSNITGLLLTRDGGNNNNGSEIFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTKAKRRVVQREKRAVGIGALFLGFLGAAGSTMGAASMTLTVQARQLLSGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARILAVERYLKDQQLLGIWGCSGKLLCTTAVPWNASWSNKSLEQIWNHTTWMEWDREINNYTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWFNITNWLWYIKLFIMIVGGLVGLRIVFAVLSVVNRVRQGYSPLSFQTHLPIPRGPDRPEGIEEEGGERDRDRSIRLVNGSLALIWDDLRSLCLFSYHRLRDLLLIVTRIVELLGRRGWEALKYWWNLLQYWSQELKNSAVSLLNATAIAVAEGTDRVIEVVQEAYRAIRHIPRRIRQGLERILL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, AIDS, Apoptosis, Clathrin-mediated endocytosis of virus by host, Cleavage on pair of basic residues, Coiled coil, Disulfide bond, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Glycoprotein, Host cell membrane, Host endosome, Host membrane, Host-virus interaction, Lipoprotein, Membrane, Palmitate, Signal, Transmembrane, Transmembrane helix, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral penetration into host cytoplasm, Virion, Virus endocytosis by host, Virus entry into host cell</keywords>
<tm_data type="str">
685-705</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-21-41</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P04624>
<P04626 type="dict">
<id type="str">
8208</id>
<uniprot_acc type="str">
P04626</uniprot_acc>
<pdb_id type="str">
2N2A</pdb_id>
<bmr_id type="str">
25593</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,B</chain>
<start type="str">
683</start>
<end type="str">
696</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
26585403</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;On the first stage, the structure of dimer subunit was calculated, revealing the presence of two α-helical regions, corresponding to TMD (residues 650–678) and JMA (683–696) and connected by a disordered loop. NMR data obtained for HER2-TMJMA in the micellar environment. e show here that JMA regions are membrane bound in DMPC/DHPC bicelles. Works with EGFR reveal that JMA forms only unstable and transient helix in lipid bicelles [19] and HER2 JMA is completely disordered in the presence of anionic bicelles according to our data . all EGFR/HER members have similar distribution of charged/polar and hydrophobic residues in JMA segments (Fig. S11): they contain KRTLRRLL or synonymous motifs and are charged at the C-terminus. Therefore, we can assume that HER kinase may be activated not only by the parallel/antiparallel arrangement of its JMAs but also by the mode of JMA/membrane interaction.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-40-53;B-40-53</color_data>
<comment type="str">
</comment>
<accession type="str">
P04626</accession>
<gene type="str">
ERBB2</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Receptor tyrosine-protein kinase erbB-2</protname>
<sequence type="str">
MELAALCRWGLLLALLPPGAASTQVCTGTDMKLRLPASPETHLDMLRHLYQGCQVVQGNLELTYLPTNASLSFLQDIQEVQGYVLIAHNQVRQVPLQRLRIVRGTQLFEDNYALAVLDNGDPLNNTTPVTGASPGGLRELQLRSLTEILKGGVLIQRNPQLCYQDTILWKDIFHKNNQLALTLIDTNRSRACHPCSPMCKGSRCWGESSEDCQSLTRTVCAGGCARCKGPLPTDCCHEQCAAGCTGPKHSDCLACLHFNHSGICELHCPALVTYNTDTFESMPNPEGRYTFGASCVTACPYNYLSTDVGSCTLVCPLHNQEVTAEDGTQRCEKCSKPCARVCYGLGMEHLREVRAVTSANIQEFAGCKKIFGSLAFLPESFDGDPASNTAPLQPEQLQVFETLEEITGYLYISAWPDSLPDLSVFQNLQVIRGRILHNGAYSLTLQGLGISWLGLRSLRELGSGLALIHHNTHLCFVHTVPWDQLFRNPHQALLHTANRPEDECVGEGLACHQLCARGHCWGPGPTQCVNCSQFLRGQECVEECRVLQGLPREYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFPDEEGACQPCPINCTHSCVDLDDKGCPAEQRASPLTSIISAVVGILLVVVLGVVFGILIKRRQQKIRKYTMRRLLQETELVEPLTPSGAMPNQAQMRILKETELRKVKVLGSGAFGTVYKGIWIPDGENVKIPVAIKVLRENTSPKANKEILDEAYVMAGVGSPYVSRLLGICLTSTVQLVTQLMPYGCLLDHVRENRGRLGSQDLLNWCMQIAKGMSYLEDVRLVHRDLAARNVLVKSPNHVKITDFGLARLLDIDETEYHADGGKVPIKWMALESILRRRFTHQSDVWSYGVTVWELMTFGAKPYDGIPAREIPDLLEKGERLPQPPICTIDVYMIMVKCWMIDSECRPRFRELVSEFSRMARDPQRFVVIQNEDLGPASPLDSTFYRSLLEDDDMGDLVDAEEYLVPQQGFFCPDPAPGAGGMVHHRHRSSSTRSGGGDLTLGLEPSEEEAPRSPLAPSEGAGSDVFDGDLGMGAAKGLQSLPTHDPSPLQRYSEDPTVPLPSETDGYVAPLTCSPQPEYVNQPDVRPQPPSPREGPLPAARPAGATLERPKTLSPGKNGVVKDVFAFGGAVENPEYLTPQGGAAPQPHPPPAFSPAFDNLYYWDQDPPERGAPPSTFKGTPTAENPEYLGLDVPV</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Activator, Alternative initiation, Alternative splicing, ATP-binding, Cell membrane, Chromosomal rearrangement, Cytoplasm, Disulfide bond, Endosome, Glycoprotein, Kinase, Membrane, Nucleotide-binding, Nucleus, Phosphoprotein, Polymorphism, Receptor, Reference proteome, Signal, Transcription, Transcription regulation, Transferase, Transmembrane, Transmembrane helix, Tyrosine-protein kinase</keywords>
<tm_data type="str">
653-675</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
A-10-32;B-10-32</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations, papers</proof>
<mproof type="str">
calculations, papers</mproof>
</P04626>
<P05067 type="dict">
<id type="str">
8217</id>
<uniprot_acc type="str">
P05067</uniprot_acc>
<pdb_id type="str">
2MJ1</pdb_id>
<bmr_id type="str">
19701</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
685</start>
<end type="str">
695</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
</pubmed>
<doi type="str">
</doi>
<statement type="str">
</statement>
<environment type="str">
aqueous environment</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-1-11</color_data>
<comment type="str">
</comment>
<accession type="str">
P05067</accession>
<gene type="str">
APP</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Amyloid-beta precursor protein</protname>
<sequence type="str">
MLPGLALLLLAAWTARALEVPTDGNAGLLAEPQIAMFCGRLNMHMNVQNGKWDSDPSGTKTCIDTKEGILQYCQEVYPELQITNVVEANQPVTIQNWCKRGRKQCKTHPHFVIPYRCLVGEFVSDALLVPDKCKFLHQERMDVCETHLHWHTVAKETCSEKSTNLHDYGMLLPCGIDKFRGVEFVCCPLAEESDNVDSADAEEDDSDVWWGGADTDYADGSEDKVVEVAEEEEVAEVEEEEADDDEDDEDGDEVEEEAEEPYEEATERTTSIATTTTTTTESVEEVVREVCSEQAETGPCRAMISRWYFDVTEGKCAPFFYGGCGGNRNNFDTEEYCMAVCGSAMSQSLLKTTQEPLARDPVKLPTTAASTPDAVDKYLETPGDENEHAHFQKAKERLEAKHRERMSQVMREWEEAERQAKNLPKADKKAVIQHFQEKVESLEQEAANERQQLVETHMARVEAMLNDRRRLALENYITALQAVPPRPRHVFNMLKKYVRAEQKDRQHTLKHFEHVRMVDPKKAAQIRSQVMTHLRVIYERMNQSLSLLYNVPAVAEEIQDEVDELLQKEQNYSDDVLANMISEPRISYGNDALMPSLTETKTTVELLPVNGEFSLDDLQPWHSFGADSVPANTENEVEPVDARPAADRGLTTRPGSGLTNIKTEEISEVKMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Alzheimer disease, Amyloid, Amyloidosis, Apoptosis, Cell adhesion, Cell membrane, Cell projection, Coated pit, Copper, Cytoplasm, Cytoplasmic vesicle, Direct protein sequencing, Disease mutation, Disulfide bond, Endocytosis, Endosome, Glycoprotein, Heparin-binding, Iron, Isopeptide bond, Membrane, Metal-binding, Neurodegeneration, Notch signaling pathway, Nucleus, Oxidation, Phosphoprotein, Polymorphism, Protease inhibitor, Proteoglycan, Reference proteome, Secreted, Serine protease inhibitor, Signal, Sulfation, Transmembrane, Transmembrane helix, Ubl conjugation, Zinc</keywords>
<tm_data type="str">
702-722</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
A-15-35</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, DIBS, calculations</proof>
<mproof type="str">
calculations, papers</mproof>
</P05067>
<P05106 type="dict">
<id type="str">
8228</id>
<uniprot_acc type="str">
P05106</uniprot_acc>
<pdb_id type="str">
2LJF</pdb_id>
<bmr_id type="str">
17932</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
770</start>
<end type="str">
784</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
21956114</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Moreover, we have demonstrated that several residues of β3NP (Trp739, Thr741, Ala742, Pro745, and Tyr747) could interact with DPC micelles and these interactions initiate the formation of a second short α-helical region (Leu746-Asn756), which is not generally observed in either aqueous β3 or αIIbβ3 heterodimer&quot; ... &quot;. In this study, we also have accumulated the first direct evidence that tyrosine phosphorylation affects the structure and the association of 3CT with membrane.&quot;</statement>
<environment type="str">
aqueous conditions</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-49-63</color_data>
<comment type="str">
</comment>
<accession type="str">
P05106</accession>
<gene type="str">
ITGB3</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Integrin beta-3</protname>
<sequence type="str">
MRARPRPRPLWATVLALGALAGVGVGGPNICTTRGVSSCQQCLAVSPMCAWCSDEALPLGSPRCDLKENLLKDNCAPESIEFPVSEARVLEDRPLSDKGSGDSSQVTQVSPQRIALRLRPDDSKNFSIQVRQVEDYPVDIYYLMDLSYSMKDDLWSIQNLGTKLATQMRKLTSNLRIGFGAFVDKPVSPYMYISPPEALENPCYDMKTTCLPMFGYKHVLTLTDQVTRFNEEVKKQSVSRNRDAPEGGFDAIMQATVCDEKIGWRNDASHLLVFTTDAKTHIALDGRLAGIVQPNDGQCHVGSDNHYSASTTMDYPSLGLMTEKLSQKNINLIFAVTENVVNLYQNYSELIPGTTVGVLSMDSSNVLQLIVDAYGKIRSKVELEVRDLPEELSLSFNATCLNNEVIPGLKSCMGLKIGDTVSFSIEAKVRGCPQEKEKSFTIKPVGFKDSLIVQVTFDCDCACQAQAEPNSHRCNNGNGTFECGVCRCGPGWLGSQCECSEEDYRPSQQDECSPREGQPVCSQRGECLCGQCVCHSSDFGKITGKYCECDDFSCVRYKGEMCSGHGQCSCGDCLCDSDWTGYYCNCTTRTDTCMSSNGLLCSGRGKCECGSCVCIQPGSYGDTCEKCPTCPDACTFKKECVECKKFDRGALHDENTCNRYCRDEIESVKELKDTGKDAVNCTYKNEDDCVVRFQYYEDSSGKSILYVVEEPECPKGPDILVVLLSVMGAILLIGLAALLIWKLLITIHDRKEFAKFEEERARAKWDTANNPLYKEATSTFTNITYRGT</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cell adhesion, Cell junction, Cell membrane, Cell projection, Direct protein sequencing, Disease mutation, Disulfide bond, Glycoprotein, Host cell receptor for virus entry, Host-virus interaction, Integrin, Membrane, Phosphoprotein, Polymorphism, Postsynaptic cell membrane, Receptor, Reference proteome, Repeat, Signal, Synapse, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
719-741</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, DIBS, calculations</proof>
<mproof type="str">
calculations, papers</mproof>
</P05106>
<P05878 type="dict">
<id type="str">
8230</id>
<uniprot_acc type="str">
P05878</uniprot_acc>
<pdb_id type="str">
2M8O</pdb_id>
<bmr_id type="str">
19263</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
656</start>
<end type="str">
683</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
24429284</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;At the end of the simulation (235 ns) the peptide adopted a continuous helix, whose main axis was parallel to the lipid bilayer plane. In this state, the membraneinterface- embedded side-chains made contact preferentially with the polar head-groups of POPC, but not with Chol or PA.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P05878</accession>
<gene type="str">
ENV</gene>
<organism type="str">
Human immunodeficiency virus type 1 group M subtype B (isolate SC)</organism>
<protname type="str">
Envelope glycoprotein gp160</protname>
<sequence type="str">
MRVKGSGRNYQHLWRWGTMLLGILMICSAAEQLWVTVYYGVPVWKEATTTLFCASDAKAYDTEVHNIWATHACVPTDPNPQEVVLGNVTENFNMWKNNMVEQMHEDIISLWDQSLKPCVKLTPLCVTLNCTNLRNDTSTNATNTTSSNRGKMEGGEMTNCSFNITTSIRSKVQKEYALFYKLDVVPIDNTSYTLINCNTSVITQACPKVSFEPIPIHYCARWFAILNCNNKKFNGTGPCTNVSTVQCTHGIRPVVSTHLLLNGSLAEEEVVLRSENFTDNAKTIIVQLKEAVEINCTRPNNNTTRSIHIGPGRAFYATGDIIGDIRQAHCNISRAKWNNTLKQIVIKLRDQFENKTIIFNRSSGGDPEIVMHSFNCGGEFFYCNSTQLFSSTWNGTEGSNNTGGNDTITLPCRIKEIINMWQEVGKAMYAPPIKGQVKCSSNITGLLLTRDGGNSKNGSKNENTEIFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTKAKRRVVQREKRAVGTIGAMFLGFLGAAGSTMGATSMTLTVQARLLLSGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARVLAVERYLRDQQLLGIWGCSGKLICTTTVPWNTSWSNKSLDKIWGNMTWMEWEREIDNYTSLIYTLIEESQNQQEKNEQELLELDKWASLWNWFNITNWLWYIKIFIMIVGGLVGLRIVFTVLSIVNRVRQGYSPLSFQTRLPSQRGPDRPEGIEEEGGERDRDRSGRLVDGFLAIIWVDXRSLCLFSYHRLRDLLLIVTRIVELLGRRGWEALKYWWNLLQYWSQELRNSAVSFVNATAIAVAEGTDRVIELLQRAFRAILHIPTRIRQGLERALQ</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, AIDS, Apoptosis, Clathrin-mediated endocytosis of virus by host, Cleavage on pair of basic residues, Coiled coil, Disulfide bond, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Glycoprotein, Host cell membrane, Host endosome, Host membrane, Host-virus interaction, Lipoprotein, Membrane, Palmitate, Signal, Transmembrane, Transmembrane helix, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral penetration into host cytoplasm, Virion, Virus endocytosis by host, Virus entry into host cell</keywords>
<tm_data type="str">
685-705</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-30-50</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P05878>
<P06213 type="dict">
<id type="str">
8231</id>
<uniprot_acc type="str">
P06213</uniprot_acc>
<pdb_id type="str">
2MFR</pdb_id>
<bmr_id type="str">
19568</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
942</start>
<end type="str">
948</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
24440425</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The residues 942–948 preceding the TMD have a propensity to be a short helix and may interact with membrane.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-4-10</color_data>
<comment type="str">
Only available structure for this region.</comment>
<accession type="str">
P06213</accession>
<gene type="str">
INSR</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Insulin receptor</protname>
<sequence type="str">
MATGGRRGAAAAPLLVAVAALLLGAAGHLYPGEVCPGMDIRNNLTRLHELENCSVIEGHLQILLMFKTRPEDFRDLSFPKLIMITDYLLLFRVYGLESLKDLFPNLTVIRGSRLFFNYALVIFEMVHLKELGLYNLMNITRGSVRIEKNNELCYLATIDWSRILDSVEDNYIVLNKDDNEECGDICPGTAKGKTNCPATVINGQFVERCWTHSHCQKVCPTICKSHGCTAEGLCCHSECLGNCSQPDDPTKCVACRNFYLDGRCVETCPPPYYHFQDWRCVNFSFCQDLHHKCKNSRRQGCHQYVIHNNKCIPECPSGYTMNSSNLLCTPCLGPCPKVCHLLEGEKTIDSVTSAQELRGCTVINGSLIINIRGGNNLAAELEANLGLIEEISGYLKIRRSYALVSLSFFRKLRLIRGETLEIGNYSFYALDNQNLRQLWDWSKHNLTITQGKLFFHYNPKLCLSEIHKMEEVSGTKGRQERNDIALKTNGDQASCENELLKFSYIRTSFDKILLRWEPYWPPDFRDLLGFMLFYKEAPYQNVTEFDGQDACGSNSWTVVDIDPPLRSNDPKSQNHPGWLMRGLKPWTQYAIFVKTLVTFSDERRTYGAKSDIIYVQTDATNPSVPLDPISVSNSSSQIILKWKPPSDPNGNITHYLVFWERQAEDSELFELDYCLKGLKLPSRTWSPPFESEDSQKHNQSEYEDSAGECCSCPKTDSQILKELEESSFRKTFEDYLHNVVFVPRKTSSGTGAEDPRPSRKRRSLGDVGNVTVAVPTVAAFPNTSSTSVPTSPEEHRPFEKVVNKESLVISGLRHFTGYRIELQACNQDTPEERCSVAAYVSARTMPEAKADDIVGPVTHEIFENNVVHLMWQEPKEPNGLIVLYEVSYRRYGDEELHLCVSRKHFALERGCRLRGLSPGNYSVRIRATSLAGNGSWTEPTYFYVTDYLDVPSNIAKIIIGPLIFVFLFSVVIGSIYLFLRKRQPDGPLGPLYASSNPEYLSASDVFPCSVYVPDEWEVSREKITLLRELGQGSFGMVYEGNARDIIKGEAETRVAVKTVNESASLRERIEFLNEASVMKGFTCHHVVRLLGVVSKGQPTLVVMELMAHGDLKSYLRSLRPEAENNPGRPPPTLQEMIQMAAEIADGMAYLNAKKFVHRDLAARNCMVAHDFTVKIGDFGMTRDIYETDYYRKGGKGLLPVRWMAPESLKDGVFTTSSDMWSFGVVLWEITSLAEQPYQGLSNEQVLKFVMDGGYLDQPDNCPERVTDLMRMCWQFNPKMRPTFLEIVNLLKDDLHPSFPEVSFFHSEENKAPESEELEMEFEDMENVPLDRSSHCQREEAGGRDGGSSLGFKRSYEEHIPYTHMNGGKKNGRILTLPRSNPS</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, ATP-binding, Carbohydrate metabolism, Cell membrane, Cleavage on pair of basic residues, Diabetes mellitus, Direct protein sequencing, Disease mutation, Disulfide bond, Endosome, Glycoprotein, Kinase, Lysosome, Membrane, Nucleotide-binding, Phosphoprotein, Polymorphism, Receptor, Reference proteome, Repeat, Signal, Transferase, Transmembrane, Transmembrane helix, Tyrosine-protein kinase</keywords>
<tm_data type="str">
957-979</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
A-19-41</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations</proof>
<mproof type="str">
calculations, papers</mproof>
</P06213>
<P07766 type="dict">
<id type="str">
8233</id>
<uniprot_acc type="str">
P07766</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
188</start>
<end type="str">
199</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19733547</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Here we analyzed membrane binding of intrinsically disorderedζcyt, CD3εcyt, and FcRγcyt, and found that there are two different modes of their lipid-binding activity toward acidic phospholipids (Figs. 3b and S2c): 1) coupled binding and folding that is characteristic for micelles and those vesicles that are unstable upon protein binding (DMPG), and 2) binding without folding that is observed in the presence of stable vesicles (POPG).&quot;</statement>
<environment type="str">
POPG LUV, POPG SUV</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
Disorder to order in LMPG micelles, DMPG SUV, DMPG LUV and disorder to disorder in POPG LUV, POPG SUV.</comment>
<accession type="str">
P07766</accession>
<gene type="str">
CD3E</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
T-cell surface glycoprotein CD3 epsilon chain</protname>
<sequence type="str">
MQSGTHWRVLGLCLLSVGVWGQDGNEEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQHNDKNIGGDEDDKNIGSDEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVCENCMEMDVMSVATIVIVDICITGGLLLLVYYWSKNRKAKAKPVTRGAGAGGRQRGQNKERPPPVPNPDYEPIRKGQRDLYSGLNQRRI</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Adaptive immunity, Cell membrane, Disulfide bond, Immunity, Immunoglobulin domain, Membrane, Phosphoprotein, Receptor, Reference proteome, Signal, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
127-152</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, DIBS, papers</proof>
<mproof type="str">
papers</mproof>
</P07766>
<P08411 type="dict">
<id type="str">
8234</id>
<uniprot_acc type="str">
P08411</uniprot_acc>
<pdb_id type="str">
1FW5</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
246</start>
<end type="str">
264</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
10984480</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The peptide interacted with liposomes only if negatively charged lipids were present that induced a structural change in the peptide from a random coil to a partially a-helical conformation. NMR structure shows that the a-helix is amphipathic, the hydrophobic surface consisting of several leucines, a valine, and a tryptophan moiety (Trp-259).&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-2-20</color_data>
<comment type="str">
</comment>
<accession type="str">
P08411</accession>
<gene type="str">
NA</gene>
<organism type="str">
Semliki forest virus</organism>
<protname type="str">
Polyprotein P1234</protname>
<sequence type="str">
MAAKVHVDIEADSPFIKSLQKAFPSFEVESLQVTPNDHANARAFSHLATKLIEQETDKDTLILDIGSAPSRRMMSTHKYHCVCPMRSAEDPERLVCYAKKLAAASGKVLDREIAGKITDLQTVMATPDAESPTFCLHTDVTCRTAAEVAVYQDVYAVHAPTSLYHQAMKGVRTAYWIGFDTTPFMFDALAGAYPTYATNWADEQVLQARNIGLCAASLTEGRLGKLSILRKKQLKPCDTVMFSVGSTLYTESRKLLRSWHLPSVFHLKGKQSFTCRCDTIVSCEGYVVKKITMCPGLYGKTVGYAVTYHAEGFLVCKTTDTVKGERVSFPVCTYVPSTICDQMTGILATDVTPEDAQKLLVGLNQRIVVNGRTQRNTNTMKNYLLPIVAVAFSKWAREYKADLDDEKPLGVRERSLTCCCLWAFKTRKMHTMYKKPDTQTIVKVPSEFNSFVIPSLWSTGLAIPVRSRIKMLLAKKTKRELIPVLDASSARDAEQEEKERLEAELTREALPPLVPIAPAETGVVDVDVEELEYHAGAGVVETPRSALKVTAQPNDVLLGNYVVLSPQTVLKSSKLAPVHPLAEQVKIITHNGRAGRYQVDGYDGRVLLPCGSAIPVPEFQALSESATMVYNEREFVNRKLYHIAVHGPSLNTDEENYEKVRAERTDAEYVFDVDKKCCVKREEASGLVLVGELTNPPFHEFAYEGLKIRPSAPYKTTVVGVFGVPGSGKSAIIKSLVTKHDLVTSGKKENCQEIVNDVKKHRGLDIQAKTVDSILLNGCRRAVDILYVDEAFACHSGTLLALIALVKPRSKVVLCGDPKQCGFFNMMQLKVNFNHNICTEVCHKSISRRCTRPVTAIVSTLHYGGKMRTTNPCNKPIIIDTTGQTKPKPGDIVLTCFRGWVKQLQLDYRGHEVMTAAASQGLTRKGVYAVRQKVNENPLYAPASEHVNVLLTRTEDRLVWKTLAGDPWIKVLSNIPQGNFTATLEEWQEEHDKIMKVIEGPAAPVDAFQNKANVCWAKSLVPVLDTAGIRLTAEEWSTIITAFKEDRAYSPVVALNEICTKYYGVDLDSGLFSAPKVSLYYENNHWDNRPGGRMYGFNAATAARLEARHTFLKGQWHTGKQAVIAERKIQPLSVLDNVIPINRRLPHALVAEYKTVKGSRVEWLVNKVRGYHVLLVSEYNLALPRRRVTWLSPLNVTGADRCYDLSLGLPADAGRFDLVFVNIHTEFRIHHYQQCVDHAMKLQMLGGDALRLLKPGGSLLMRAYGYADKISEAVVSSLSRKFSSARVLRPDCVTSNTEVFLLFSNFDNGKRPSTLHQMNTKLSAVYAGEAMHTAGCAPSYRVKRADIATCTEAAVVNAANARGTVGDGVCRAVAKKWPSAFKGAATPVGTIKTVMCGSYPVIHAVAPNFSATTEAEGDRELAAVYRAVAAEVNRLSLSSVAIPLLSTGVFSGGRDRLQQSLNHLFTAMDATDADVTIYCRDKSWEKKIQEAIDMRTAVELLNDDVELTTDLVRVHPDSSLVGRKGYSTTDGSLYSYFEGTKFNQAAIDMAEILTLWPRLQEANEQICLYALGETMDNIRSKCPVNDSDSSTPPRTVPCLCRYAMTAERIARLRSHQVKSMVVCSSFPLPKYHVDGVQKVKCEKGLLFDPTVPSVVSPRKYAASTTDHSDRSLRGFDLDWTTDSSSTASDTMSLPSLQSCDIDSIYEPMAPIVVTADVHPEPAGIADLAADVHPEPADHVDLENPIPPPRPKRAAYLASRAAERPVPAPRKPTPAPRTAFRNKLPLTFGDFDEHEVDALASGITFGDFDDVLRLGRAGAYIFSSDTGSGHLQQKSVRQHNLQCAQLDAVEEEKMYPPKLDTEREKLLLLKMQMHPSEANKSRYQSRKVENMKATVVDRLTSGARLYTGADVGRIPTYAVRYPRPVYSPTVIERFSSPDVAIAACNEYLSRNYPTVASYQITDEYDAYLDMVDGSDSCLDRATFCPAKLRCYPKHHAYHQPTVRSAVPSPFQNTLQNVLAAATKRNCNVTQMRELPTMDSAVFNVECFKRYACSGEYWEEYAKQPIRITTENITTYVTKLKGPKAAALFAKTHNLVPLQEVPMDRFTVDMKRDVKVTPGTKHTEERPKVQVIQAAEPLATAYLCGIHRELVRRLNAVLRPNVHTLFDMSAEDFDAIIASHFHPGDPVLETDIASFDKSQDDSLALTGLMILEDLGVDQYLLDLIEAAFGEISSCHLPTGTRFKFGAMMKSGMFLTLFINTVLNITIASRVLEQRLTDSACAAFIGDDNIVHGVISDKLMAERCASWVNMEVKIIDAVMGEKPPYFCGGFIVFDSVTQTACRVSDPLKRLFKLGKPLTAEDKQDEDRRRALSDEVSKWFRTGLGAELEVALTSRYEVEGCKSILIAMATLARDIKAFKKLRGPVIHLYGGPRLVR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, ATP-binding, Eukaryotic host gene expression shutoff by virus, Eukaryotic host transcription shutoff by virus, GTP-binding, Helicase, Host cell membrane, Host cell projection, Host cytoplasm, Host cytoplasmic vesicle, Host gene expression shutoff by virus, Host membrane, Host nucleus, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host RNA polymerase II by virus, Inhibition of host STAT1 by virus, Lipoprotein, Membrane, Metal-binding, Methyltransferase, mRNA capping, mRNA processing, Multifunctional enzyme, Nucleotide-binding, Nucleotidyltransferase, Palmitate, Phosphoprotein, Protease, Reference proteome, RNA suppression of termination, RNA-binding, RNA-directed RNA polymerase, S-adenosyl-L-methionine, Thiol protease, Transferase, Ubl conjugation, Viral immunoevasion, Viral RNA replication, Zinc</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P08411>
<P08514 type="dict">
<id type="str">
8241</id>
<uniprot_acc type="str">
P08514</uniprot_acc>
<pdb_id type="str">
2KNC</pdb_id>
<bmr_id type="str">
16496</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
entity1</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
1020</start>
<end type="str">
1028</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19805198</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;At the TM-CT border, the spatial positions of the positively charged groups of αIIb K989/β3 K716 (Fig. 1D) suggest that they begin the cytoplasmic regions. However, it is possible that the side chains following membrane-proximal residues αIIb V990-F993, β3 L717-I721 are inserted into or anchored onto the membrane (Fig. 1D), which may stabilize the relative orientations of the TM helices.&quot; ... &quot;In the cytoplasmic region, the αIIb 989KVGFFKR displays a helical conformation in our structure, in which αIIb 990VGF weakly contacts β3 I719 and αIIb R995 forms a salt-bridge with β3 D723. In contrast, in Lau et al. (6), the helix ends at αIIb V990 followed by an unusual left handed reverse turn&quot; ... &quot;different solvent systems (CD3CN/H2O vs. bicelles) in the 2 studies may have captured 2 different conformational states of an intrinsically flexible region. The overall topology of the CT clasp determined in CD3CN/H2O was found to be similar to the one determined in aqueous solution (Fig. S5) (7), suggesting that this clasp represents a native conformation in the aqueous cytoplasm.&quot;</statement>
<environment type="str">
organic solvent</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-35-43</color_data>
<comment type="str">
</comment>
<accession type="str">
P08514</accession>
<gene type="str">
ITGA2B</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Integrin alpha-IIb</protname>
<sequence type="str">
MARALCPLQALWLLEWVLLLLGPCAAPPAWALNLDPVQLTFYAGPNGSQFGFSLDFHKDSHGRVAIVVGAPRTLGPSQEETGGVFLCPWRAEGGQCPSLLFDLRDETRNVGSQTLQTFKARQGLGASVVSWSDVIVACAPWQHWNVLEKTEEAEKTPVGSCFLAQPESGRRAEYSPCRGNTLSRIYVENDFSWDKRYCEAGFSSVVTQAGELVLGAPGGYYFLGLLAQAPVADIFSSYRPGILLWHVSSQSLSFDSSNPEYFDGYWGYSVAVGEFDGDLNTTEYVVGAPTWSWTLGAVEILDSYYQRLHRLRGEQMASYFGHSVAVTDVNGDGRHDLLVGAPLYMESRADRKLAEVGRVYLFLQPRGPHALGAPSLLLTGTQLYGRFGSAIAPLGDLDRDGYNDIAVAAPYGGPSGRGQVLVFLGQSEGLRSRPSQVLDSPFPTGSAFGFSLRGAVDIDDNGYPDLIVGAYGANQVAVYRAQPVVKASVQLLVQDSLNPAVKSCVLPQTKTPVSCFNIQMCVGATGHNIPQKLSLNAELQLDRQKPRQGRRVLLLGSQQAGTTLNLDLGGKHSPICHTTMAFLRDEADFRDKLSPIVLSLNVSLPPTEAGMAPAVVLHGDTHVQEQTRIVLDCGEDDVCVPQLQLTASVTGSPLLVGADNVLELQMDAANEGEGAYEAELAVHLPQGAHYMRALSNVEGFERLICNQKKENETRVVLCELGNPMKKNAQIGIAMLVSVGNLEEAGESVSFQLQIRSKNSQNPNSKIVLLDVPVRAEAQVELRGNSFPASLVVAAEEGEREQNSLDSWGPKVEHTYELHNNGPGTVNGLHLSIHLPGQSQPSDLLYILDIQPQGGLQCFPQPPVNPLKVDWGLPIPSPSPIHPAHHKRDRRQIFLPEPEQPSRLQDPVLVSCDSAPCTVVQCDLQEMARGQRAMVTVLAFLWLPSLYQRPLDQFVLQSHAWFNVSSLPYAVPPLSLPRGEAQVWTQLLRALEERAIPIWWVLVGVLGGLLLLTILVLAMWKVGFFKRNRPPLEEDDEEGE</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Calcium, Cell adhesion, Cleavage on pair of basic residues, Direct protein sequencing, Disease mutation, Disulfide bond, Glycoprotein, Integrin, Membrane, Metal-binding, Polymorphism, Pyrrolidone carboxylic acid, Receptor, Reference proteome, Repeat, Signal, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
994-1019</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
A-9-34</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
papers</mproof>
</P08514>
<P0A334 type="dict">
<id type="str">
8242</id>
<uniprot_acc type="str">
P0A334</uniprot_acc>
<pdb_id type="str">
1F6G</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,B,C,D</chain>
<start type="str">
1</start>
<end type="str">
20</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
11158168</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;the NH2 terminus is an α-helix positioned at the lipid–water interface, and the sharp drop in NiEdda accessibility around residues 15 and 16 may suggest a point of full insertion into the membrane&quot; ... &quot;. Recent experiments have shown that deletion of the first 20 residues in KcsA is associated with a dramatic reduction in expression levels. This may indicate that, as in other membrane proteins, the NH2 terminus of KcsA contains signaling information important for the correct folding and targeting of the channel in the inner membrane&quot; ... &quot;The NH2 terminus forms an amphipathic α-helix at the membrane–water interface that protrudes away from the channel core, and does not interact with any other part of the channel&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-1-20;B-1-20;C-1-20;D-1-20</color_data>
<comment type="str">
Missing residues in X-ray structures.</comment>
<accession type="str">
P0A334</accession>
<gene type="str">
KCSA</gene>
<organism type="str">
Streptomyces lividans</organism>
<protname type="str">
pH-gated potassium channel KcsA</protname>
<sequence type="str">
MPPMLSGLLARLVKLLLGRHGSALHWRAAGAATVLLVIVLLAGSYLAVLAERGAPGAQLITYPRALWWSVETATTVGYGDLYPVTLWGRLVAVVVMVAGITSFGLVTAALATWFVGREQERRGHFVRHSEKAAEEAYTRTTRALHERFDRLERMLDDNRR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell membrane, Ion channel, Ion transport, Ligand-gated ion channel, Membrane, Transmembrane, Transmembrane helix, Transport</keywords>
<tm_data type="str">
28-50;88-111</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
A-28-50;A-88-111;B-28-50;B-88-111;C-28-50;C-88-111;D-28-50;D-88-111</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers, structures</mproof>
</P0A334>
<P0A6M2 type="dict">
<id type="str">
8246</id>
<uniprot_acc type="str">
P0A6M2</uniprot_acc>
<pdb_id type="str">
2ZUP</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
116</start>
<end type="str">
119</end>
<category type="str">
ordered</category>
<location type="str">
extracellular</location>
<pubmed type="str">
19214188</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The structure of the ‘horizontal helix’ revealed its clear amphiphilicity.&quot; ... &quot;Taken together, we conclude that the hydrophobic side of the horizontal helix is associated with the membrane and that this association is important for DsbB activity to oxidize DsbA effectively.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
B-116-119</color_data>
<comment type="str">
</comment>
<accession type="str">
P0A6M2</accession>
<gene type="str">
DSBB</gene>
<organism type="str">
Escherichia coli (strain K12)</organism>
<protname type="str">
Disulfide bond formation protein B</protname>
<sequence type="str">
MLRFLNQCSQGRGAWLLMAFTALALELTALWFQHVMLLKPCVLCIYERCALFGVLGAALIGAIAPKTPLRYVAMVIWLYSAFRGVQLTYEHTMLQLYPSPFATCDFMVRFPEWLPLDKWVPQVFVASGDCAERQWDFLGLEMPQWLLGIFIAYLIVAVLVVISQPFKAKKRDLFGR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell inner membrane, Cell membrane, Chaperone, Disulfide bond, Electron transport, Membrane, Oxidoreductase, Redox-active center, Reference proteome, Transmembrane, Transmembrane helix, Transport</keywords>
<tm_data type="str">
15-31;50-65;72-89;145-163</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
B-15-31;B-50-65;B-72-89;B-145-163</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
calculations, papers, structures</mproof>
</P0A6M2>
<P0A734 type="dict">
<id type="str">
8247</id>
<uniprot_acc type="str">
P0A734</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
2</start>
<end type="str">
9</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
21738659</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;We have provided direct evidence that the extreme N-terminus of MinE from E. coli folds into an amphipathic α-helix when associated with a membrane. This property differed from MinE from Neisseria gonorrhoeae (Ng), which showed a stable N-terminal helix in solution [21]&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
MinD and BDLP share common features of self-assembly on the membrane and nucleotide-mediated conformational changes; however, BDLP is anchored to the membrane by a hydrophobic paddle, while MinD is attached by an amphipathic helix.</comment>
<accession type="str">
P0A734</accession>
<gene type="str">
MINE</gene>
<organism type="str">
Escherichia coli (strain K12)</organism>
<protname type="str">
Cell division topological specificity factor</protname>
<sequence type="str">
MALLDFFLSRKKNTANIAKERLQIIVAERRRSDAEPHYLPQLRKDILEVICKYVQIDPEMVTVQLEQKDGDISILELNVTLPEAEELK</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell cycle, Cell division, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P0A734>
<P0ABN1 type="dict">
<id type="str">
8248</id>
<uniprot_acc type="str">
P0ABN1</uniprot_acc>
<pdb_id type="str">
2KDC</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,B,C</chain>
<start type="str">
7</start>
<end type="str">
24</end>
<category type="str">
ordered</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19556511</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;motions associated with the N terminus (residues 1 to 25) have hindered determination of its conformation beyond confirming the presence of two stable amphipathic helices.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-6-23;B-6-23;C-6-23</color_data>
<comment type="str">
X-ray structures shows the N-terminal amphiphilic helix.</comment>
<accession type="str">
P0ABN1</accession>
<gene type="str">
DGKA</gene>
<organism type="str">
Escherichia coli (strain K12)</organism>
<protname type="str">
Diacylglycerol kinase</protname>
<sequence type="str">
MANNTTGFTRIIKAAGYSWKGLRAAWINEAAFRQEGVAVLLAVVIACWLDVDAITRVLLISSVMLVMIVEILNSAIEAVVDRIGSEYHELSGRAKDMGSAAVLIAIIVAVITWCILLWSHFG</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, ATP-binding, Cell inner membrane, Cell membrane, Direct protein sequencing, Kinase, Lipid biosynthesis, Lipid metabolism, Membrane, Nucleotide-binding, Phospholipid biosynthesis, Phospholipid metabolism, Reference proteome, Transferase, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
34-49;53-69;96-119</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-33-48;A-52-68;A-95-118;B-33-48;B-52-68;B-95-118;C-33-48;C-52-68;C-95-118</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers, structures</mproof>
</P0ABN1>
<P0C0Y1 type="dict">
<id type="str">
8251</id>
<uniprot_acc type="str">
P0C0Y1</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
5</start>
<end type="str">
25</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
10101971</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;A comparison of CD spectra of LH1β observed in organic solvents and detergent micelles shows that the helical character of the peptide does not change appreciably between the two milieus.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P0C0Y1</accession>
<gene type="str">
PUFB</gene>
<organism type="str">
Rhodobacter sphaeroides</organism>
<protname type="str">
Light-harvesting protein B-875 beta chain</protname>
<sequence type="str">
MADKSDLGYTGLTDEQAQELHSVYMSGLWPFSAVAIVAHLAVYIWRPWF</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Antenna complex, Bacteriochlorophyll, Cell inner membrane, Cell membrane, Chlorophyll, Chromophore, Direct protein sequencing, Light-harvesting polypeptide, Magnesium, Membrane, Metal-binding, Signal-anchor, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
28-45</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
papers, structures</mproof>
</P0C0Y1>
<P0DOF5 type="dict">
<id type="str">
8255</id>
<uniprot_acc type="str">
P0DOF5</uniprot_acc>
<pdb_id type="str">
2L0J</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
51</start>
<end type="str">
59</end>
<category type="str">
ordered</category>
<location type="str">
intracellular</location>
<pubmed type="str">
20966252</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;A third native-like aspect of the amphipathic helix is the outward projection of the charged residues Lys49, Arg53, His57, Lys60, and Arg61 (Fig. 1B), which conforms to the “positive inside rule” such that M2 interacts favorably with negatively charged lipids in native membranes.&quot; ... &quot;Contrary to the lipid interfacial location determined here, the detergent-solubilized structure has the four amphipathic helices forming a bundle in the bulk aqueous solution where the amides fully exchange with deuterium&quot;</statement>
<environment type="str">
DOPC:DOPE bicelles</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P0DOF5</accession>
<gene type="str">
M</gene>
<organism type="str">
Influenza A virus (strain A/Udorn/307/1972 H3N2)</organism>
<protname type="str">
Matrix protein 2</protname>
<sequence type="str">
MSLLTEVETPIRNEWGCRCNDSSDPLVVAASIIGILHLILWILDRLFFKCIYRFFEHGLKRGPSTEGVPESMREEYRKEQQSAVDADDSHFVSIELE</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Disulfide bond, Glycoprotein, Host cell membrane, Host membrane, Host-virus interaction, Hydrogen ion transport, Inhibition of host autophagy by virus, Ion channel, Ion transport, Lipoprotein, Membrane, Palmitate, Phosphoprotein, Signal-anchor, Transmembrane, Transmembrane helix, Transport, Viral ion channel, Virion</keywords>
<tm_data type="str">
23-43</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers, structures</mproof>
</P0DOF5>
<P10279 type="dict">
<id type="str">
8256</id>
<uniprot_acc type="str">
P10279</uniprot_acc>
<pdb_id type="str">
1SKH</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
10</start>
<end type="str">
17</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
15554701</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The sequence of the bPrPp differs from the typical amphipathic properties seen in, e.g., penetratin and instead contains a stretch of hydrophobic residues (Ile10−Met17). This is likely to affect the properties of the bPrPp peptide as a CPP and make it less benign than, e.g., penetratin in its membrane interactions. This property could possibly be related to toxicity coupled to membrane translocation in the biological effects of bPrP and its potential cargo comprised of the remainder of the PrP.&quot;</statement>
<environment type="str">
DHPC</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P10279</accession>
<gene type="str">
PRNP</gene>
<organism type="str">
Bos taurus</organism>
<protname type="str">
Major prion protein</protname>
<sequence type="str">
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPGGGWNTGGSRYPGQGSPGGNRYPPQGGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHGGGGWGQGGTHGQWNKPSKPKTNMKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGSDYEDRYYRENMHRYPNQVYYRPVDQYSNQNNFVHDCVNITVKEHTVTTTTKGENFTETDIKMMERVVEQMCITQYQRESQAYYQRGASVILFSSPPVILLISFLIFLIVG</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Amyloid, Cell membrane, Copper, Direct protein sequencing, Disulfide bond, Glycoprotein, Golgi apparatus, GPI-anchor, Lipoprotein, Membrane, Metal-binding, Polymorphism, Prion, Reference proteome, Repeat, Signal, Zinc</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
PFAM</proof>
<mproof type="str">
papers</mproof>
</P10279>
<P10636 type="dict">
<id type="str">
8267</id>
<uniprot_acc type="str">
P10636</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
662</start>
<end type="str">
671</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
2522951</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Tau K19 binds to unilamellar 1:1 POPC/POPS lipid vesicles, and the segments comprising residues 253–261, 315–323, and 346–355 adopt a highly helical structure&quot; … &quot;The helices in the tau MBD repeats are located at the membrane surface and do not penetrate deeply into the lipid bilayer&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P10636</accession>
<gene type="str">
MAPT</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Microtubule-associated protein tau</protname>
<sequence type="str">
MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKESPLQTPTEDGSEEPGSETSDAKSTPTAEDVTAPLVDEGAPGKQAAAQPHTEIPEGTTAEEAGIGDTPSLEDEAAGHVTQEPESGKVVQEGFLREPGPPGLSHQLMSGMPGAPLLPEGPREATRQPSGTGPEDTEGGRHAPELLKHQLLGDLHQEGPPLKGAGGKERPGSKEEVDEDRDVDESSPQDSPPSKASPAQDGRPPQTAAREATSIPGFPAEGAIPLPVDFLSKVSTEIPASEPDGPSVGRAKGQDAPLEFTFHVEITPNVQKEQAHSEEHLGRAAFPGAPGEGPEARGPSLGEDTKEADLPEPSEKQPAAAPRGKPVSRVPQLKARMVSKSKDGTGSDDKKAKTSTRSSAKTLKNRPCLSPKHPTPGSSDPLIQPSSPAVCPEPPSSPKYVSSVTSRTGSSGAKEMKLKGADGKTKIATPRGAAPPGQKGQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYSSPGSPGTPGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSRLQTAPVPMPDLKNVKSKIGSTENLKHQPGGGKVQIINKKLDLSNVQSKCGSKDNIKHVPGGGSVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVSGDTSPRHLSNVSSTGSIDMVDSPQLATLADEVSASLAKQGL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Alzheimer disease, Cell membrane, Cell projection, Cytoplasm, Cytoskeleton, Direct protein sequencing, Disease mutation, Disulfide bond, Glycation, Glycoprotein, Isopeptide bond, Membrane, Methylation, Microtubule, Neurodegeneration, Parkinsonism, Phosphoprotein, Polymorphism, Reference proteome, Repeat, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P10636>
<P10912 type="dict">
<id type="str">
8268</id>
<uniprot_acc type="str">
P10912</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
270</start>
<end type="str">
357</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
25846210</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;the human prolactin (PRL) receptor (PRLR) and growth hormone receptor (GHR) ICDs are intrinsically disordered throughout their entire lengths. We show that they interact specifically with hallmark lipids of the inner plasma membrane leaflet through conserved motifs resembling immuno receptor tyrosine-based activation motifs (ITAMs). However, contrary to the observations made for ITAMs, lipid association of the PRLR and GHR ICDs was shown to be unaccompanied by changes in transient secondary structure and independent of tyrosine phosphorylation.&quot; ... &quot;Importantly, we noticed that the structural elements located in LID1 and LID3 of the PRLR-ICD were conserved in the GHR-ICD (Figure 3E), suggesting that they may be important for the lipid association [13]&quot; ... &quot;Combined, these data showed that the PRLR and GHR ICDs were intrinsically disordered and interacted with hallmark lipids of the inner plasma membrane leaflet through a highly conserved LID1 in a manner not accompanied by induced folding (Supplementary Figure S4).&quot;</statement>
<environment type="str">
POPC/POPS SUVs</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P10912</accession>
<gene type="str">
GHR</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Growth hormone receptor</protname>
<sequence type="str">
MDLWQLLLTLALAGSSDAFSGSEATAAILSRAPWSLQSVNPGLKTNSSKEPKFTKCRSPERETFSCHWTDEVHHGTKNLGPIQLFYTRRNTQEWTQEWKECPDYVSAGENSCYFNSSFTSIWIPYCIKLTSNGGTVDEKCFSVDEIVQPDPPIALNWTLLNVSLTGIHADIQVRWEAPRNADIQKGWMVLEYELQYKEVNETKWKMMDPILTTSVPVYSLKVDKEYEVRVRSKQRNSGNYGEFSEVLYVTLPQMSQFTCEEDFYFPWLLIIIFGIFGLTVMLFVFLFSKQQRIKMLILPPVPVPKIKGIDPDLLKEGKLEEVNTILAIHDSYKPEFHSDDSWVEFIELDIDEPDEKTEESDTDRLLSSDHEKSHSNLGVKDGDSGRTSCCEPDILETDFNANDIHEGTSEVAQPQRLKGEADLLCLDQKNQNNSPYHDACPATQQPSVIQAEKNKPQPLPTEGAESTHQAAHIQLSNPSSLSNIDFYAQVSDITPAGSVVLSPGQKNKAGMSQCDMHPEMVSLCQENFLMDNAYFCEADAKKCIPVAPHIKVESHIQPSLNQEDIYITTESLTTAAGRPGTGEHVPGSEMPVPDYTSIHIVQSPQGLILNATALPLPDKEFLSSCGYVSTDQLNKIMP</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cell membrane, Direct protein sequencing, Disease mutation, Disulfide bond, Dwarfism, Endocytosis, Glycoprotein, Membrane, Phosphoprotein, Polymorphism, Receptor, Reference proteome, Secreted, Signal, Transmembrane, Transmembrane helix, Ubl conjugation</keywords>
<tm_data type="str">
265-288</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
papers</mproof>
</P10912>
<P10997 type="dict">
<id type="str">
8272</id>
<uniprot_acc type="str">
P10997</uniprot_acc>
<pdb_id type="str">
5MGQ</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
38</start>
<end type="str">
52</end>
<category type="str">
ordered</category>
<location type="str">
extracellular</location>
<pubmed type="str">
28287098</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Initially, it was suggested that hIAPP adopts a random coil structure23. However, more recently reports indicate that the N-terminal part of hIAPP involving residues 5–19 and to a somewhat smaller degree residues 20–22 transiently samples an α-helical structure in solution8,24. The same residues adopt a fully helical structure when bound to membranes or micelles19,24,25&quot;</statement>
<environment type="str">
aqueous</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-5-19</color_data>
<comment type="str">
</comment>
<accession type="str">
P10997</accession>
<gene type="str">
IAPP</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Islet amyloid polypeptide</protname>
<sequence type="str">
MGILKLQVFLIVLSVALNHLKATPIESHQVEKRKCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTYGKRNAVEVLKREPLNYLPL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Amidation, Amyloid, Cleavage on pair of basic residues, Direct protein sequencing, Disulfide bond, Hormone, Polymorphism, Reference proteome, Secreted, Signal</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</P10997>
<P12931 type="dict">
<id type="str">
8275</id>
<uniprot_acc type="str">
P12931</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
12</start>
<end type="str">
19</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
25914053</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;PPP binding nearly completely abolished direct lipid interaction of the SH3domain but preserved those of residues 64–67 (ULBR) and 14–17 in the C-terminal part of the SH4 domain.&quot; ... &quot;Residues 12–19 constitute the cSH4 subdomain that shows the largest perturbations in the presence of nega-tively charged lipids.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
See also https://doi.org/10.1016/S1063-5823(02)52012-3</comment>
<accession type="str">
P12931</accession>
<gene type="str">
SRC</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Proto-oncogene tyrosine-protein kinase Src</protname>
<sequence type="str">
MGSNKSKPKDASQRRRSLEPAENVHGAGGGAFPASQTPSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGGVTTFVALYDYESRTETDLSFKKGERLQIVNNTEGDWWLAHSLSTGQTGYIPSNYVAPSDSIQAEEWYFGKITRRESERLLLNAENPRGTFLVRESETTKGAYCLSVSDFDNAKGLNVKHYKIRKLDSGGFYITSRTQFNSLQQLVAYYSKHADGLCHRLTTVCPTSKPQTQGLAKDAWEIPRESLRLEVKLGQGCFGEVWMGTWNGTTRVAIKTLKPGTMSPEAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEYMSKGSLLDFLKGETGKYLRLPQLVDMAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIEDNEYTARQGAKFPIKWTAPEAALYGRFTIKSDVWSFGILLTELTTKGRVPYPGMVNREVLDQVERGYRMPCPPECPESLHDLMCQCWRKEPEERPTFEYLQAFLEDYFTSTEPQYQPGENL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, ATP-binding, Cell adhesion, Cell cycle, Cell junction, Cell membrane, Cytoplasm, Cytoskeleton, Disease mutation, Host-virus interaction, Immunity, Kinase, Lipoprotein, Membrane, Mitochondrion, Mitochondrion inner membrane, Myristate, Nucleotide-binding, Nucleus, Phosphoprotein, Polymorphism, Proto-oncogene, Reference proteome, SH2 domain, SH3 domain, Transferase, Tyrosine-protein kinase, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
papers</mproof>
</P12931>
<P12969 type="dict">
<id type="str">
8276</id>
<uniprot_acc type="str">
P12969</uniprot_acc>
<pdb_id type="str">
2KJ7</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
55</start>
<end type="str">
60</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
19456151</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The structure of rIAPP in DPC micelles is dominated by a N-terminal helical region from residues A5 to S23 and a disordered C-terminus. In solution, the helical region of rIAPP is shorter than in the membrane-bound form, spanning residues 5–19, whereas residues 20–23 are involved in hydrogen-bonding interactions with the helix but do not adopt a helical conformation.&quot; ... &quot;It is interesting to note that the decrease in the intensity of the α-proton chemical shift resonances upon the addition of the quencher is less in the stable helix located toward the N-terminal region (A5–V17) than in the flexible but structured helix (R18–L23) and the unstructured C-terminus (G24–Y37), indicating that the C-terminal region is significantly more exposed to the solvent. Thus, the site-specific paramagnetic quenching results clearly indicate that the N-terminal part of rat IAPP is a stable helix that is bound to the surface of the membrane, whereas the C-terminal is mobile and is exposed to the solvent,&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-18-23</color_data>
<comment type="str">
rIAPP dos not form toxic amyloid plakks like human IAPP.</comment>
<accession type="str">
P12969</accession>
<gene type="str">
IAPP</gene>
<organism type="str">
Rattus norvegicus</organism>
<protname type="str">
Islet amyloid polypeptide</protname>
<sequence type="str">
MRCISRLPAVLLILSVALGHLRATPVGSGTNPQVDKRKCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTYGKRNVAEDPNRESLDFLLL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Amidation, Amyloid, Cleavage on pair of basic residues, Direct protein sequencing, Disulfide bond, Hormone, Reference proteome, Secreted, Signal</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P12969>
<P15382 type="dict">
<id type="str">
8278</id>
<uniprot_acc type="str">
P15382</uniprot_acc>
<pdb_id type="str">
2K21</pdb_id>
<bmr_id type="str">
15102</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
92</start>
<end type="str">
106</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
18611041</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;This model reflects the amphipathicity of the helix spanning residues 12-23 and the presence of a net positive charge for the helix spanning residues 92-106, properties that confer affinity for the negatively charged surface of LMPG micelles.&quot;</statement>
<environment type="str">
LMPG</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-101-115</color_data>
<comment type="str">
</comment>
<accession type="str">
P15382</accession>
<gene type="str">
KCNE1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Potassium voltage-gated channel subfamily E member 1</protname>
<sequence type="str">
MILSNTTAVTPFLTKLWQETVQQGGNMSGLARRSPRSSDGKLEALYVLMVLGFFGFFTLGIMLSYIRSKKLEHSNDPFNVYIESDAWQEKDKAYVQARVLESYRSCYVVENHLAIEQPNTHLPETKPSP</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell membrane, Deafness, Disease mutation, Glycoprotein, Ion channel, Ion transport, Long QT syndrome, Membrane, Phosphoprotein, Polymorphism, Potassium, Potassium channel, Potassium transport, Reference proteome, Transmembrane, Transmembrane helix, Transport, Voltage-gated channel</keywords>
<tm_data type="str">
44-66</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations</proof>
<mproof type="str">
papers</mproof>
</P15382>
<P16471 type="dict">
<id type="str">
8281</id>
<uniprot_acc type="str">
P16471</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
547</start>
<end type="str">
598</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
25846210</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;the human prolactin (PRL) receptor (PRLR) and growth hormone receptor (GHR) ICDs are intrinsically disordered throughout their entire lengths. We show that they interact specifically with hallmark lipids of the inner plasma membrane leaflet through conserved motifs resembling immuno receptor tyrosine-based activation motifs (ITAMs). However, contrary to the observations made for ITAMs, lipid association of the PRLR and GHR ICDs was shown to be unaccompanied by changes in transient secondary structure and independent of tyrosine phosphorylation.&quot; ... &quot;Collectively, these data showed that the PRLR-ICD interacted specifically with negatively charged inner leaflet lipids through three LIDs; LID1 (Gly236–His300), LID2 (Phe350–His383) and LID3 (Cys547–His598). These LIDs contained four of the identified THs (TH1–TH3 and TH5), but no changes in secondary structure were observed from CD analyses upon POPC/POPS SUV binding for PRLR-ICDFL, PRLR-ICDmp or PRLR-ICDmd (Supplementary Figures S4A–S4C).&quot;</statement>
<environment type="str">
POPC/POPS SUVs</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P16471</accession>
<gene type="str">
PRLR</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Prolactin receptor</protname>
<sequence type="str">
MKENVASATVFTLLLFLNTCLLNGQLPPGKPEIFKCRSPNKETFTCWWRPGTDGGLPTNYSLTYHREGETLMHECPDYITGGPNSCHFGKQYTSMWRTYIMMVNATNQMGSSFSDELYVDVTYIVQPDPPLELAVEVKQPEDRKPYLWIKWSPPTLIDLKTGWFTLLYEIRLKPEKAAEWEIHFAGQQTEFKILSLHPGQKYLVQVRCKPDHGYWSAWSPATFIQIPSDFTMNDTTVWISVAVLSAVICLIIVWAVALKGYSMVTCIFPPVPGPKIKGFDAHLLEKGKSEELLSALGCQDFPPTSDYEDLLVEYLEVDDSEDQHLMSVHSKEHPSQGMKPTYLDPDTDSGRGSCDSPSLLSEKCEEPQANPSTFYDPEVIEKPENPETTHTWDPQCISMEGKIPYFHAGGSKCSTWPLPQPSQHNPRSSYHNITDVCELAVGPAGAPATLLNEAGKDALKSSQTIKSREEGKATQQREVESFHSETDQDTPWLLPQEKTPFGSAKPLDYVEIHKVNKDGALSLLPKQRENSGKPKKPGTPENNKEYAKVSGVMDNNILVLVPDPHAKNVACFEESAKEAPPSLEQNQAEKALANFTATSSKCRLQLGGLDYLDPACFTHSFH</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Disease mutation, Disulfide bond, Glycoprotein, Membrane, Metal-binding, Polymorphism, Receptor, Reference proteome, Repeat, Secreted, Signal, Transmembrane, Transmembrane helix, Zinc</keywords>
<tm_data type="str">
235-258</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
papers</mproof>
</P16471>
<P17810 type="dict">
<id type="str">
8282</id>
<uniprot_acc type="str">
P17810</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
310</start>
<end type="str">
325</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
28325841</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;in vitro studies show that the P/rds C terminus is intrinsically disordered, but membrane mimetics can induce helical structure in its central region&quot; ... &quot;the central portion of this domain can partition into phospholipid membranes as an AH and can specifically participate in (but is not required for) membrane curvature generation.&quot;</statement>
<environment type="str">
LUV: POPG, POPC, DOPC, DOPE, DOPS</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P17810</accession>
<gene type="str">
PRPH2</gene>
<organism type="str">
Bos taurus</organism>
<protname type="str">
Peripherin-2</protname>
<sequence type="str">
MALLKVKFDQKKRVKLAQGLWLMNWFSVLAGIIIFGLGLFLKIELRKRSDVMNNSESHFVPNSLIGVGVLSCVFNSLAGKICYDALDPAKYAKWKPWLKPYLAVCVLFNVVLFLVALCCFLLRGSLESTLAHGLKNGMKFYRDTDTPGRCFMKKTIDMLQIEFKCCGNNGFRDWFEIQWISNRYLDFSSKEVKDRIKSNVDGRYLVDGVPFSCCNPNSPRPCIQYQLTNNSAHYSYDHQTEELNLWLRGCRAALLSYYSNLMNTTGAVTLLVWLFEVTITVGLRYLHTALEGMANPEDPECESEGWLLEKSVPETWKAFLESVKKLGKGNQVEAEGEDAGQAPAAG</sequence>
<comments type="str">
None</comments>
<keywords type="str">
Cell adhesion, Cell projection, Direct protein sequencing, Disulfide bond, Glycoprotein, Membrane, Reference proteome, Sensory transduction, Transmembrane, Transmembrane helix, Vision</keywords>
<tm_data type="str">
19-41;63-79;102-122;265-283</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
papers</mproof>
</P17810>
<P19235 type="dict">
<id type="str">
8283</id>
<uniprot_acc type="str">
P19235</uniprot_acc>
<pdb_id type="str">
2MV6</pdb_id>
<bmr_id type="str">
25079</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
240</start>
<end type="str">
244</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
25418301</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Although the N-terminal residues of the construct are not structured, some residues are protected from exposure to Gd-DTPA, suggesting that this region may interact with micelles.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-5-9</color_data>
<comment type="str">
</comment>
<accession type="str">
P19235</accession>
<gene type="str">
EPOR</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Erythropoietin receptor</protname>
<sequence type="str">
MDHLGASLWPQVGSLCLLLAGAAWAPPPNLPDPKFESKAALLAARGPEELLCFTERLEDLVCFWEEAASAGVGPGNYSFSYQLEDEPWKLCRLHQAPTARGAVRFWCSLPTADTSSFVPLELRVTAASGAPRYHRVIHINEVVLLDAPVGLVARLADESGHVVLRWLPPPETPMTSHIRYEVDVSAGNGAGSVQRVEILEGRTECVLSNLRGRTRYTFAVRARMAEPSFGGFWSAWSEPVSLLTPSDLDPLILTLSLILVVILVLLTVLALLSHRRALKQKIWPGIPSPESEFEGLFTTHKGNFQLWLYQNDGCLWWSPCTPFTEDPPASLEVLSERCWGTMQAVEPGTDDEGPLLEPVGSEHAQDTYLVLDKWLLPRNPPSEDLPGPGGSVDIVAMDEGSEASSCSSALASKPSPEGASAASFEYTILDPSSQLLRPWTLCPELPPTPPHLKYLYLVVSDSGISTDYSSGDSQGAQGGLSDGPYSNPYENSLIPAAEPLPPSYVACS</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cell membrane, Congenital erythrocytosis, Disease mutation, Disulfide bond, Glycoprotein, Isopeptide bond, Membrane, Phosphoprotein, Polymorphism, Receptor, Reference proteome, Secreted, Signal, Transmembrane, Transmembrane helix, Ubl conjugation</keywords>
<tm_data type="str">
251-273</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
A-16-38</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
calculations, papers</proof>
<mproof type="str">
papers</mproof>
</P19235>
<P19836 type="dict">
<id type="str">
8285</id>
<uniprot_acc type="str">
P19836</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
243</start>
<end type="str">
266</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
23238251</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The lipid compositional sensor is a lipid-inducible amphipathic helix, domain M. Although the regulation and mechanisms of membrane binding of domain M are well understood,11,12&quot; ... &quot;CD data,19 disorder predictions,[17], [23] and the inter-subunit disulfide bridging and unfocussed intra-domain M BBP cross-linking data we presented here for rat CCT argue against a stable α-helical structure for the entire M domain in the soluble form but are compatible with a small, pre-folded α-helical segment (e.g., the primary AI motif) on a flexible leash.&quot;</statement>
<environment type="str">
DOPG, PC, PG</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
Amphitropic protein.</comment>
<accession type="str">
P19836</accession>
<gene type="str">
PCYT1A</gene>
<organism type="str">
Rattus norvegicus</organism>
<protname type="str">
Choline-phosphate cytidylyltransferase A</protname>
<sequence type="str">
MDAQSSAKVNSRKRRKEVPGPNGATEEDGIPSKVQRCAVGLRQPAPFSDEIEVDFSKPYVRVTMEEACRGTPCERPVRVYADGIFDLFHSGHARALMQAKNLFPNTYLIVGVCSDELTHNFKGFTVMNENERYDAVQHCRYVDEVVRNAPWTLTPEFLAEHRIDFVAHDDIPYSSAGSDDVYKHIKEAGMFAPTQRTEGISTSDIITRIVRDYDVYARRNLQRGYTAKELNVSFINEKKYHLQERVDKVKKKVKDVEEKSKEFVQKVEEKSIDLIQKWEEKSREFIGSFLEMFGPEGALKHMLKEGKGRMLQAISPKQSPSSSPTHERSPSPSFRWPFSGKTSPSSSPASLSRCKAVTCDISEDEED</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Cytoplasm, Direct protein sequencing, Lipid biosynthesis, Lipid metabolism, Membrane, Nucleotidyltransferase, Phospholipid biosynthesis, Phospholipid metabolism, Phosphoprotein, Reference proteome, Repeat, Transferase, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
papers</mproof>
</P19836>
<P20444 type="dict">
<id type="str">
8286</id>
<uniprot_acc type="str">
P20444</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
625</start>
<end type="str">
634</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
23762412</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;We show that V5α and its phosphorylation-mimicking variant, dmV5α, are intrinsically disordered protein domains .&quot; ... &quot;Upon micelle binding, V5α acquires a higher propensity to form helical structures at the conserved &quot;NFD&quot; motif and the entire C-terminal third of the domain.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P20444</accession>
<gene type="str">
PRKCA</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
Protein kinase C alpha type</protname>
<sequence type="str">
MADVYPANDSTASQDVANRFARKGALRQKNVHEVKDHKFIARFFKQPTFCSHCTDFIWGFGKQGFQCQVCCFVVHKRCHEFVTFSCPGADKGPDTDDPRSKHKFKIHTYGSPTFCDHCGSLLYGLIHQGMKCDTCDMNVHKQCVINDPSLCGMDHTEKRGRIYLKAEVTDEKLHVTVRDAKNLIPMDPNGLSDPYVKLKLIPDPKNESKQKTKTIRSNLNPQWNESFTFKLKPSDKDRRLSVEIWDWDRTTRNDFMGSLSFGVSELMKMPASGWYKAHNQEEGEYYNVPIPEGDEEGNMELRQKFEKAKLGPVGNKVISPSEDRKQPSNNLDRVKLTDFNFLMVLGKGSFGKVMLADRKGTEELYAIKILKKDVVIQDDDVECTMVEKRVLALLDKPPFLTQLHSCFQTVDRLYFVMEYVNGGDLMYHIQQVGKFKEPQAVFYAAEISIGLFFLHKRGIIYRDLKLNNVMLNSEGHIKIADFGMCKEHMMDGVTTRTFCGTPDYIAPEIIAYQPYGKSVDWWAYGVLLYEMLAGQPPFDGEDEDELFQSIMEHNVSYPKSLSKEAVSICKGLMTKQPAKRLGCGPEGERDVREHAFFRRIDWEKLENREIQPPFKPKVCGKGAENFDKFFTRGQPVLTPPDQLVIANIDQSDFEGFSYVNPQFVHPILQSAV</sequence>
<comments type="str">
None</comments>
<keywords type="str">
Acetylation, Angiogenesis, Apoptosis, ATP-binding, Calcium, Cell adhesion, Cell membrane, Cytoplasm, Kinase, Membrane, Metal-binding, Mitochondrion, Nucleotide-binding, Nucleus, Phosphoprotein, Polymorphism, Reference proteome, Repeat, Serine/threonine-protein kinase, Transferase, Zinc, Zinc-finger</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
papers</mproof>
</P20444>
<P20963 type="dict">
<id type="str">
8294</id>
<uniprot_acc type="str">
P20963</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
142</start>
<end type="str">
156</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19733547</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Here we analyzed membrane binding of intrinsically disorderedζcyt, CD3εcyt, and FcRγcyt, and found that there are two different modes of their lipid-binding activity toward acidic phospholipids (Figs. 3b and S2c): 1) coupled binding and folding that is characteristic for micelles and those vesicles that are unstable upon protein binding (DMPG), and 2) binding without folding that is observed in the presence of stable vesicles (POPG).&quot;</statement>
<environment type="str">
LMPG micelles, DMPG SUV, DMPG LUV</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
POPG LUV, POPG SUV : disorder to disorder. LMPG micelles, DMPG SUV, DMPG LUV : disorder to order.</comment>
<accession type="str">
P20963</accession>
<gene type="str">
CD247</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
T-cell surface glycoprotein CD3 zeta chain</protname>
<sequence type="str">
MKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILFIYGVILTALFLRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Adaptive immunity, Alternative splicing, Cell membrane, Host-virus interaction, Immunity, Membrane, Phosphoprotein, Receptor, Reference proteome, Repeat, Signal, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
31-51</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, DIBS, papers</proof>
<mproof type="str">
papers</mproof>
</P20963>
<P21579 type="dict">
<id type="str">
8295</id>
<uniprot_acc type="str">
P21579</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
80</start>
<end type="str">
90</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
27191789</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;we first sought conditions under which the IDR may become partially ordered and found that the lipid composition of the membrane was a key factor. In the presence of a complex lipid mixture that mimics the outer leaflet of a synaptic vesicle (Figure 1B), we found through DSC (Figure 2) and NMR (Figure 4) measurements that the IDR experiences endotherm and chemical shift changes, respectively, consistent with IDR–synaptic lipid interactions, though in a mostly disordered structural state.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P21579</accession>
<gene type="str">
SYT1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Synaptotagmin-1</protname>
<sequence type="str">
MVSESHHEALAAPPVTTVATVLPSNATEPASPGEGKEDAFSKLKEKFMNELHKIPLPPWALIAIAIVAVLLVLTCCFCICKKCLFKKKNKKKGKEKGGKNAINMKDVKDLGKTMKDQALKDDDAETGLTDGEEKEEPKEEEKLGKLQYSLDYDFQNNQLLVGIIQAAELPALDMGGTSDPYVKVFLLPDKKKKFETKVHRKTLNPVFNEQFTFKVPYSELGGKTLVMAVYDFDRFSKHDIIGEFKVPMNTVDFGHVTEEWRDLQSAEKEEQEKLGDICFSLRYVPTAGKLTVVILEAKNLKKMDVGGLSDPYVKIHLMQNGKRLKKKKTTIKKNTLNPYYNESFSFEVPFEQIQKVQVVVTVLDYDKIGKNDAIGKVFVGYNSTGAELRHWSDMLANPRRPIAQWHTLQVEEEVDAMLAVKK</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Calcium, Cell junction, Cytoplasm, Cytoplasmic vesicle, Differentiation, Disease mutation, Glycoprotein, Lipoprotein, Membrane, Metal-binding, Palmitate, Phosphoprotein, Reference proteome, Repeat, Synapse, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
58-80</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P21579>
<P22646 type="dict">
<id type="str">
8297</id>
<uniprot_acc type="str">
P22646</uniprot_acc>
<pdb_id type="str">
2K4F</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
181</start>
<end type="str">
185</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19013279</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;the long N-terminal segment is highly flexible, while the close interaction of the hydrophobic residues of the ITAM with the lipid induces partial folding of the ITAM centered on the critical residues of the motif.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-49-53</color_data>
<comment type="str">
</comment>
<accession type="str">
P22646</accession>
<gene type="str">
CD3E</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
T-cell surface glycoprotein CD3 epsilon chain</protname>
<sequence type="str">
MRWNTFWGILCLSLLAVGTCQDDAENIEYKVSISGTSVELTCPLDSDENLKWEKNGQELPQKHDKHLVLQDFSEVEDSGYYVCYTPASNKNTYLYLKARVCEYCVEVDLTAVAIIIIVDICITLGLLMVIYYWSKNRKAKAKPVTRGTGAGSRPRGQNKERPPPVPNPDYEPIRKGQRDLYSGLNQRAV</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Adaptive immunity, Cell membrane, Disulfide bond, Immunity, Immunoglobulin domain, Membrane, Phosphoprotein, Receptor, Reference proteome, Signal, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
109-134</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P22646>
<P22943 type="dict">
<id type="str">
8307</id>
<uniprot_acc type="str">
P22943</uniprot_acc>
<pdb_id type="str">
4AXP</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
74</start>
<end type="str">
100</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
22848679</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;NMR analysis indicated that Hsp12 is monomeric and intrinsically unfolded in solution, but switches to a 4-helical conformation upon binding to membrane-mimetic SDS micelles. The structure of micelle-bound Hsp12 reported here is consistent with its recently proposed function as a membrane-stabilising &apos;lipid chaperone&apos;. Taken together, our data suggest that DR-induced Hsp12 expression contributes to lifespan extension, possibly via membrane alterations.&quot;</statement>
<environment type="str">
SDS</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-74-100</color_data>
<comment type="str">
</comment>
<accession type="str">
P22943</accession>
<gene type="str">
HSP12</gene>
<organism type="str">
Saccharomyces cerevisiae (strain ATCC 204508 / S288c)</organism>
<protname type="str">
12 kDa heat shock protein</protname>
<sequence type="str">
MSDAGRKGFGEKASEALKPDSQKSYAEQGKEYITDKADKVAGKVQPEDNKGVFQGVHDSAEKGKDNAEGQGESLADQARDYMGAAKSKLNDAVEYVSGRVHGEEDPTKK</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Direct protein sequencing, Phosphoprotein, Reference proteome, Stress response</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
calculations, papers</mproof>
</P22943>
<P26039 type="dict">
<id type="str">
8309</id>
<uniprot_acc type="str">
P26039</uniprot_acc>
<pdb_id type="str">
2KMA</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
144</start>
<end type="str">
167</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
20150896</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;F1 loop interacts with negatively charged lipid bilayers&quot; ... &quot;An encounter between the loop and a cluster of negatively charged phospholipids on the cytoplasmic face of the membrane would induce the loop to adopt a folded helical structure in which basic residues on one side of the helix are bound to the membrane. This folding would decrease the length of the loop and draw the F1 domain closer to the membrane&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P26039</accession>
<gene type="str">
TLN1</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
Talin-1</protname>
<sequence type="str">
MVALSLKISIGNVVKTMQFEPSTMVYDACRMIRERIPEALAGPPNDFGLFLSDDDPKKGIWLEAGKALDYYMLRNGDTMEYRKKQRPLKIRMLDGTVKTIMVDDSKTVTDMLMTICARIGITNHDEYSLVRELMEEKKDEGTGTLRKDKTLLRDEKKMEKLKQKLHTDDELNWLDHGRTLREQGVEEHETLLLRRKFFYSDQNVDSRDPVQLNLLYVQARDDILNGSHPVSFDKACEFAGFQCQIQFGPHNEQKHKAGFLDLKDFLPKEYVKQKGERKIFQAHKNCGQMSEIEAKVRYVKLARSLKTYGVSFFLVKEKMKGKNKLVPRLLGITKECVMRVDEKTKEVIQEWSLTNIKRWAASPKSFTLDFGDYQDGYYSVQTTEGEQIAQLIAGYIDIILKKKKSKDHFGLEGDEESTMLEDSVSPKKSTVLQQQYNRVGKVEHGSVALPAIMRSGASGPENFQVGSMPPAQQQITSGQMHRGHMPPLTSAQQALTGTINSSMQAVQAAQATLDDFETLPPLGQDAASKAWRKNKMDESKHEIHSQVDAITAGTASVVNLTAGDPAETDYTAVGCAVTTISSNLTEMSRGVKLLAALLEDEGGNGRPLLQAAKGLAGAVSELLRSAQPASAEPRQNLLQAAGNVGQASGELLQQIGESDTDPHFQDVLMQLAKAVASAAAALVLKAKSVAQRTEDSGLQTQVIAAATQCALSTSQLVACTKVVAPTISSPVCQEQLVEAGRLVAKAVEGCVSASQAATEDGQLLRGVGAAATAVTQALNELLQHVKAHATGAGPAGRYDQATDTILTVTENIFSSMGDAGEMVRQARILAQATSDLVNAIKADAEGESDLENSRKLLSAAKILADATAKMVEAAKGAAAHPDSEEQQQRLREAAEGLRMATNAAAQNAIKKKLVQRLEHAAKQAAASATQTIAAAQHAASAPKASAGPQPLLVQSCKAVAEQIPLLVQGVRGSQAQPDSPSAQLALIAASQSFLQPGGKMVAAAKASVPTIQDQASAMQLSQCAKNLGTALAELRTAAQKAQEACGPLEMDSALSVVQNLEKDLQEIKAAARDGKLKPLPGETMEKCTQDLGNSTKAVSSAIAKLLGEIAQGNENYAGIAARDVAGGLRSLAQAARGVAALTSDPAVQAIVLDTASDVLDKASSLIEEAKKASGHPGDPESQQRLAQVAKAVTQALNRCVSCLPGQRDVDNALRAVGDASKRLLSDSLPPSTGTFQEAQSRLNEAAAGLNQAATELVQASRGTPQDLARASGRFGQDFSTFLEAGVEMAGQAPSQEDRAQVVSNLKGISMSSSKLLLAAKALSTDPASPNLKSQLAAAARAVTDSINQLITMCTQQAPGQKECDNALRQLETVRELLENPVQPINDMSYFGCLDSVMENSKVLGEAMTGISQNAKNGNLPEFGDAIATASKALCGFTEAAAQAAYLVGVSDPNSQAGQQGLVEPTQFARANQAIQMACQSLGEPGCTQAQVLSAATIVAKHTSALCNSCRLASARTANPTAKRQFVQSAKEVANSTANLVKTIKALDGDFTEENRAQCRAATAPLLEAVDNLSAFASNPEFSSVPAQISPEGRAAMEPIVISAKTMLESAGGLIQTARALAVNPRDPPRWSVLAGHSRTVSDSIKKLITSMRDKAPGQLECETAIAALNSCLRDLDQASLAAVSQQLAPREGISQEALHTQMLTAVQEISHLIEPLASAARAEASQLGHKVSQMAQYFEPLTLAAVGAASKTLSHPQQMALLDQTKTLAESALQLLYTAKEAGGNPKQAAHTQEALEEAVQMMTEAVEDLTTTLNEAASAAGVVGGMVDSITQAINQLDEGPMGDPEGSFVDYQTTMVRTAKAIAVTVQEMVTKSNTSPEELGPLANQLTSDYGRLASQAKPAAVAAENEEIGAHIKHRVQELGHGCSALVTKAGALQCSPSDVYTKKELIECARRVSEKVSHVLAALQAGNRGTQACITAASAVSGIIADLDTTIMFATAGTLNREGAETFADHREGILKTAKVLVEDTKVLVQNAAGSQEKLAQAAQSSVATITRLADVVKLGAASLGAEDPETQVVLINAVKDVAKALGDLISATKAAAGKVGDDPAVWQLKNSAKVMVTNVTSLLKTVKAVEDEATKGTRALEATTEHIRQELAVFCSPEPPAKTSTPEDFIRMTKGITMATAKAVAAGNSCRQEDVIATANLSRRAIADMLRACKEAAFHPEVAPDVRLRALHYGRECANGYLELLDHVLLTLQKPNPDLKQQLTGHSKRVAGSVTELIQAAEAMKGTEWVDPEDPTVIAENELLGAAAAIEAAAKKLEQLKPRAKPKEADESLNFEEQILEAAKSIAAATSALVKAASAAQRELVAQGKVGAIPANALDDGQWSQGLISAARMVAAATNNLCEAANAAVQGHASQEKLISSAKQVAASTAQLLVACKVKADQDSEAMKRLQAAGNAVKRASDNLVKAAQKAAAFEDQENETVVVKEKMVGGIAQIIAAQEEMLRKERELEEARKKLAQIRQQQYKFLPSELRDEH</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Cell junction, Cell membrane, Cell projection, Cytoplasm, Cytoskeleton, Membrane, Phosphoprotein, Polymorphism, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
papers</mproof>
</P26039>
<P26678 type="dict">
<id type="str">
8312</id>
<uniprot_acc type="str">
P26678</uniprot_acc>
<pdb_id type="str">
1ZLL</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
2</start>
<end type="str">
15</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
16043693</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;each subunit consists of a short, positively charged amphipathic (AP) α-helix (residues 2-15), an extended linker (residues 16-22) in which residues 18-20 acquire dihedral angles characteristic of β-strand,&quot; ... &quot;These structural features suggest that PLN in the pentameric form can initiate binding of SERCA without having to dissociate first. Fig. 4 shows, however, that the original subunit conformation in the pentamer cannot simultaneously satisfy the distance restraints between PLN and SERCA that were derived from chemical crosslinking data, which include distances between K3, N27, and L49 of PLN and K400, L321, and V89 of SERCA, respectively (3, 36). To satisfy these contacts, a PLN subunit may have to be significantly stretched.&quot; ... &quot;The phosphorylation sites S16 and/or T17 are located next to the joint of the AP helix and the strand&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-2-16;B-2-16;C-2-16;D-2-16;E-2-16</color_data>
<comment type="str">
</comment>
<accession type="str">
P26678</accession>
<gene type="str">
PLN</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Cardiac phospholamban</protname>
<sequence type="str">
MEKVQYLTRSAIRRASTIEMPQQARQKLQNLFINFCLILICLLLICIIVMLL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Cardiomyopathy, Disease mutation, Endoplasmic reticulum, Lipoprotein, Membrane, Mitochondrion, Palmitate, Phosphoprotein, Reference proteome, Sarcoplasmic reticulum, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
32-52</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-32-52;B-32-52;C-32-52;D-32-52;E-32-52</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P26678>
<P27958 type="dict">
<id type="str">
8318</id>
<uniprot_acc type="str">
P27958</uniprot_acc>
<pdb_id type="str">
2KDR</pdb_id>
<bmr_id type="str">
16122</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
X</chain>
<start type="str">
1938</start>
<end type="str">
1965</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19692468</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;These results indicate a high propensity of NS4B[227–254] to interact with lipids and to adopt an α-helical structure upon lipid binding…. The amphipathic character, the positively charged residues, and the typical Trp interface residue (33), all of which are absolutely conserved among different HCV genotypes (Fig. 1A), suggest that the C-terminal half of the α-helix represents the main determinant for membrane association and likely interacts with the membrane interface in an in-plane topology, at least transiently.&quot;</statement>
<environment type="str">
TFE</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-1-28</color_data>
<comment type="str">
</comment>
<accession type="str">
P27958</accession>
<gene type="str">
NA</gene>
<organism type="str">
Hepatitis C virus genotype 1a (isolate H)</organism>
<protname type="str">
Genome polyprotein</protname>
<sequence type="str">
MSTNPKPQRKTKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVRATRKTSERSQPRGRRQPIPKARRPEGRTWAQPGYPWPLYGNEGCGWAGWLLSPRGSRPSWGPTDPRRRSRNLGKVIDTLTCGFADLMGYIPLVGAPLGGAARALAHGVRVLEDGVNYATGNLPGCSFSIFLLALLSCLTVPASAYQVRNSSGLYHVTNDCPNSSVVYEAADAILHTPGCVPCVREGNASRCWVAVTPTVATRDGKLPTTQLRRHIDLLVGSATLCSALYVGDLCGSVFLVGQLFTFSPRHHWTTQDCNCSIYPGHITGHRMAWNMMMNWSPTAALVVAQLLRIPQAIMDMIAGAHWGVLAGIKYFSMVGNWAKVLVVLLLFAGVDAETHVTGGNAGRTTAGLVGLLTPGAKQNIQLINTNGSWHINSTALNCNESLNTGWLAGLFYQHKFNSSGCPERLASCRRLTDFAQGWGPISYANGSGLDERPYCWHYPPRPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAPTYSWGANDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGVGNNTLLCPTDCFRKYPEATYSRCGSGPRITPRCMVDYPYRLWHYPCTINYTIFKVRMYVGGVEHRLEAACNWTRGERCDLEDRDRSELSPLLLSTTQWQVLPCSFTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAIKWEYVVLLFLLLADARVCSCLWMMLLISQAEAALENLVILNAASLAGTHGLVSFLVFFCFAWYLKGRWVPGAVYALYGMWPLLLLLLALPQRAYALDTEVAASCGGVVLVGLMALTLSPYYKRYISWCMWWLQYFLTRVEAQLHVWVPPLNVRGGRDAVILLTCVVHPALVFDITKLLLAIFGPLWILQASLLKVPYFVRVQGLLRICALARKIAGGHYVQMAIIKLGALTGTCVYNHLAPLRDWAHNGLRDLAVAVEPVVFSRMETKLITWGADTAACGDIINGLPVSARRGQEILLGPADGMVSKGWRLLAPITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTATQTFLATCINGVCWTVYHGAGTRTIASPKGPVIQTYTNVDQDLVGWPAPQGSRSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPTGHAVGLFRAAVCTRGVAKAVDFIPVENLETTMRSPVFTDNSSPPAVPQSFQVAHLHAPTGSGKSTKVPAAYAAKGYKVLVLNPSVAATLGFGAYMSKAHGVDPNIRTGVRTITTGSPITYSTYGKFLADAGCSGGAYDIIICDECHSTDATSISGIGTVLDQAETAGARLVVLATATPPGSVTVSHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCDELAAKLVALGINAVAYYRGLDVSVIPTSGDVVVVSTDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERPSGMFDSSVLCECYDAGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLGFWEGVFTGLTHIDAHFLSQTKQSGENFPYLVAYQATVCARAQAPPPSWDQMRKCLIRLKPTLHGPTPLLYRLGAVQNEVTLTHPITKYIMTCMSADLEVVTSTWVLVGGVLAALAAYCLSTGCVVIVGRIVLSGKPAIIPDREVLYQEFDEMEECSQHLPYIEQGMMLAEQFKQKALGLLQTASRHAEVITPAVQTNWQKLEVFWAKHMWNFISGIQYLAGLSTLPGNPAIASLMAFTAAVTSPLTTGQTLLFNILGGWVAAQLAAPGAATAFVGAGLAGAALDSVGLGKVLVDILAGYGAGVAGALVAFKIMSGEVPSTEDLVNLLPAILSPGALAVGVVFASILRRRVGPGEGAVQWMNRLIAFASRGNHVSPTHYVPESDAAARVTAILSSLTVTQLLRRLHQWISSECTTPCSGSWLRDIWDWICEVLSDFKTWLKAKLMPQLPGIPFVSCQRGYRGVWRGDGIMHTRCHCGAEITGHVKNGTMRIVGPRTCKNMWSGTFFINAYTTGPCTPLPAPNYKFALWRVSAEEYVEIRRVGDFHYVSGMTTDNLKCPCQIPSPEFFTELDGVRLHRFAPPCKPLLREEVSFRVGLHEYPVGSQLPCEPEPDVAVLTSMLTDPSHITAEAAGRRLARGSPPSMASSSASQLSAPSLKATCTANHDSPDAELIEANLLWRQEMGGNITRVESENKVVILDSFDPLVAEEDEREVSVPAEILRKSRRFAPALPVWARPDYNPLLVETWKKPDYEPPVVHGCPLPPPRSPPVPPPRKKRTVVLTESTLPTALAELATKSFGSSSTSGITGDNTTTSSEPAPSGCPPDSDVESYSSMPPLEGEPGDPDLSDGSWSTVSSGADTEDVVCCSMSYSWTGALVTPCAAEEQKLPINALSNSLLRHHNLVYSTTSRSACQRKKKVTFDRLQVLDSHYQDVLKEVKAAASKVKANLLSVEEACSLAPPHSAKSKFGYGAKDVRCHARKAVAHINSVWKDLLEDSVTPIDTTIMAKNEVFCVQPEKGGRKPARLIVFPDLGVRVCEKMALYDVVSKLPLAVMGSSYGFQYSPGQRVEFLVQAWKSKKTPMGLSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIKSLTERLYVGGPLTNSRGENCGYRRCRASRVLTTSCGNTLTRYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITSCSSNVSVAHDGAGKRVYYLTRDPTTPLARAAWETARHTPVNSWLGNIIMFAPTLWARMILMTHFFSVLIARDQLEQALNCEIYGACYSIEPLDLPPIIQRLHGLSAFSLHSYSPGEINRVAACLRKLGVPPLRAWRHRAWSVRARLLARGGKAAICGKYLFNWAVRTKLKLTPITAAGRLDLSGWFTAGYSGGDIYHSVSHARPRWFWFCLLLLAAGVGIYLLPNR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Activation of host autophagy by virus, Apoptosis, ATP-binding, Capsid protein, Clathrin-mediated endocytosis of virus by host, Disulfide bond, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, G1/S host cell cycle checkpoint dysregulation by virus, Glycoprotein, Helicase, Host cell membrane, Host cytoplasm, Host endoplasmic reticulum, Host lipid droplet, Host membrane, Host mitochondrion, Host nucleus, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host MAVS by virus, Inhibition of host RLR pathway by virus, Inhibition of host STAT1 by virus, Inhibition of host TRAFs by virus, Interferon antiviral system evasion, Ion channel, Ion transport, Isopeptide bond, Lipoprotein, Membrane, Metal-binding, Modulation of host cell cycle by virus, Multifunctional enzyme, Nucleotide-binding, Nucleotidyltransferase, Oncogene, Palmitate, Phosphoprotein, Protease, Reference proteome, Ribonucleoprotein, Ribosomal frameshifting, RNA-binding, RNA-directed RNA polymerase, Secreted, Serine protease, SH3-binding, Thiol protease, Transcription, Transcription regulation, Transferase, Transmembrane, Transmembrane helix, Transport, Ubl conjugation, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral ion channel, Viral nucleoprotein, Viral penetration into host cytoplasm, Viral RNA replication, Virion, Virus endocytosis by host, Virus entry into host cell, Zinc</keywords>
<tm_data type="str">
169-189;359-379;726-746;758-778;783-803;814-834;882-902;929-949;1658-1678;1806-1826;1829-1849;1851-1871;1882-1902;2991-3011</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
X-1054-1074</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P27958>
<P28480 type="dict">
<id type="str">
8319</id>
<uniprot_acc type="str">
P28480</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
234</start>
<end type="str">
302</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
22988242</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;CCT regulatory tails of diverse origins are composed of a long membrane lipid-inducible amphipathic helix (m-AH) followed by a highly disordered segment,&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P28480</accession>
<gene type="str">
TCP1</gene>
<organism type="str">
Rattus norvegicus</organism>
<protname type="str">
T-complex protein 1 subunit alpha</protname>
<sequence type="str">
MEGPLSVFGDRSTGEAIRSQNVMAAASIANIVKSSLGPVGLDKMLVDDIGDVTITNDGATILKLLEVEHPAAKVLCELADLQDKEVGDGTTSVVIIAAELLKNADELVKQKIHPTSVISGYRLACKEAVRYINENLIINTDELGRDCLINAAKTSMSSKIIGINGDFFANMVVDAVLAVKYTDIRGQPRYPVNSVNILKAHGRSQIESMLINGYALNCVVGSQGMLKRIVNAKIACLDFSLQKTKMKLGVQVVITDPEKLDQIRQRESDITKERIQKILATGANVILTTGGIDDMCLKYFVEAGAMAVRRVLKRDLKRIAKASGASILSTLANLEGEETFEATMLGQAEEVVQERICDDELILIKNTKARTSASIILRGANDFMCDEMERSLHDALCVVKRVLESKSVVPGGGAVEAALSIYLENYATSMGSREQLAIAEFARSLLVIPNTLAVNAAQDSTDLVAKLRAFHNEAQVNPERKNLKWIGLDLVHGKPRDNKQAGVFEPTIVKVKSLKFATEAAITILRIDDLIKLHPESKDDKHGGYENAVHSGALDD</sequence>
<comments type="str">
None</comments>
<keywords type="str">
Acetylation, ATP-binding, Chaperone, Cytoplasm, Cytoskeleton, Direct protein sequencing, Nucleotide-binding, Phosphoprotein, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P28480>
<P30273 type="dict">
<id type="str">
8320</id>
<uniprot_acc type="str">
P30273</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
62</start>
<end type="str">
81</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19733547</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Here we analyzed membrane binding of intrinsically disordered ζcyt, CD3εcyt, and FcRγcyt, and found that there are two different modes of their lipid-binding activity toward acidic phospholipids (Figs. 3b and S2c): 1) coupled binding and folding that is characteristic for micelles and those vesicles that are unstable upon protein binding (DMPG), and 2) binding without folding that is observed in the presence of stable vesicles (POPG).&quot;</statement>
<environment type="str">
POPG LUV, POPG SUV</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
Disorder to order in LMPG micelles, DMPG SUV, DMPG LUV and disorder to disorder in POPG LUV, POPG SUV.</comment>
<accession type="str">
P30273</accession>
<gene type="str">
FCER1G</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
High affinity immunoglobulin epsilon receptor subunit gamma</protname>
<sequence type="str">
MIPAVVLLLLLLVEQAAALGEPQLCYILDAILFLYGIVLTLLYCRLKIQVRKAAITSYEKSDGVYTGLSTRNQETYETLKHEKPPQ</sequence>
<comments type="str">
None</comments>
<keywords type="str">
Cell membrane, Disulfide bond, IgE-binding protein, Immunity, Innate immunity, Membrane, Phosphoprotein, Receptor, Reference proteome, Signal, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
24-44</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P30273>
<P35169 type="dict">
<id type="str">
8323</id>
<uniprot_acc type="str">
P35169</uniprot_acc>
<pdb_id type="str">
2KIT</pdb_id>
<bmr_id type="str">
16295</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
2465</start>
<end type="str">
2470</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
20042596</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Binding studies with different lipids indicate that y1fatc interacts specifically with a membrane-mimetic environment but appears not to recognize a specific lipid headgroup. In both, the structures of oxidized and reduced micelle-bound y1fatc, residues Ile-2456 to Trp-2470 of the lipid-binding motif form a hydrophobic bulb that has a rim of charged residues.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-27-33</color_data>
<comment type="str">
</comment>
<accession type="str">
P35169</accession>
<gene type="str">
TOR1</gene>
<organism type="str">
Saccharomyces cerevisiae (strain ATCC 204508 / S288c)</organism>
<protname type="str">
Serine/threonine-protein kinase TOR1</protname>
<sequence type="str">
MEPHEEQIWKSKLLKAANNDMDMDRNVPLAPNLNVNMNMKMNASRNGDEFGLTSSRFDGVVIGSNGDVNFKPILEKIFRELTSDYKEERKLASISLFDLLVSLEHELSIEEFQAVSNDINNKILELVHTKKTSTRVGAVLSIDTLISFYAYTERLPNETSRLAGYLRGLIPSNDVEVMRLAAKTLGKLAVPGGTYTSDFVEFEIKSCLEWLTASTEKNSFSSSKPDHAKHAALLIITALAENCPYLLYQYLNSILDNIWRALRDPHLVIRIDASITLAKCLSTLRNRDPQLTSQWVQRLATSCEYGFQVNTLECIHASLLVYKEILFLKDPFLNQVFDQMCLNCIAYENHKAKMIREKIYQIVPLLASFNPQLFAGKYLHQIMDNYLEILTNAPANKIPHLKDDKPQILISIGDIAYEVGPDIAPYVKQILDYIEHDLQTKFKFRKKFENEIFYCIGRLAVPLGPVLGKLLNRNILDLMFKCPLSDYMQETFQILTERIPSLGPKINDELLNLVCSTLSGTPFIQPGSPMEIPSFSRERAREWRNKNILQKTGESNDDNNDIKIIIQAFRMLKNIKSRFSLVEFVRIVALSYIEHTDPRVRKLAALTSCEIYVKDNICKQTSLHSLNTVSEVLSKLLAITIADPLQDIRLEVLKNLNPCFDPQLAQPDNLRLLFTALHDESFNIQSVAMELVGRLSSVNPAYVIPSIRKILLELLTKLKFSTSSREKEETASLLCTLIRSSKDVAKPYIEPLLNVLLPKFQDTSSTVASTALRTIGELSVVGGEDMKIYLKDLFPLIIKTFQDQSNSFKREAALKALGQLAASSGYVIDPLLDYPELLGILVNILKTENSQNIRRQTVTLIGILGAIDPYRQKEREVTSTTDISTEQNAPPIDIALLMQGMSPSNDEYYTTVVIHCLLKILKDPSLSSYHTAVIQAIMHIFQTLGLKCVSFLDQIIPTILDVMRTCSQSLLEFYFQQLCSLIIIVRQHIRPHVDSIFQAIKDFSSVAKLQITLVSVIEAISKALEGEFKRLVPLTLTLFLVILENDKSSDKVLSRRVLRLLESFGPNLEGYSHLITPKIVQMAEFTSGNLQRSAIITIGKLAKDVDLFEMSSRIVHSLLRVLSSTTSDELSKVIMNTLSLLLIQMGTSFAIFIPVINEVLMKKHIQHTIYDDLTNRILNNDVLPTKILEANTTDYKPAEQMEAADAGVAKLPINQSVLKSAWNSSQQRTKEDWQEWSKRLSIQLLKESPSHALRACSNLASMYYPLAKELFNTAFACVWTELYSQYQEDLIGSLCIALSSPLNPPEIHQTLLNLVEFMEHDDKALPIPTQSLGEYAERCHAYAKALHYKEIKFIKEPENSTIESLISINNQLNQTDAAIGILKHAQQHHSLQLKETWFEKLERWEDALHAYNEREKAGDTSVSVTLGKMRSLHALGEWEQLSQLAARKWKVSKLQTKKLIAPLAAGAAWGLGEWDMLEQYISVMKPKSPDKEFFDAILYLHKNDYDNASKHILNARDLLVTEISALINESYNRAYSVIVRTQIITEFEEIIKYKQLPPNSEKKLHYQNLWTKRLLGCQKNVDLWQRVLRVRSLVIKPKQDLQIWIKFANLCRKSGRMRLANKALNMLLEGGNDPSLPNTFKAPPPVVYAQLKYIWATGAYKEALNHLIGFTSRLAHDLGLDPNNMIAQSVKLSSASTAPYVEEYTKLLARCFLKQGEWRIATQPNWRNTNPDAILGSYLLATHFDKNWYKAWHNWALANFEVISMVQEETKLNGGKNDDDDDTAVNNDNVRIDGSILGSGSLTINGNRYPLELIQRHVVPAIKGFFHSISLLETSCLQDTLRLLTLLFNFGGIKEVSQAMYEGFNLMKIENWLEVLPQLISRIHQPDPTVSNSLLSLLSDLGKAHPQALVYPLTVAIKSESVSRQKAALSIIEKIRIHSPVLVNQAELVSHELIRVAVLWHELWYEGLEDASRQFFVEHNIEKMFSTLEPLHKHLGNEPQTLSEVSFQKSFGRDLNDAYEWLNNYKKSKDINNLNQAWDIYYNVFRKITRQIPQLQTLDLQHVSPQLLATHDLELAVPGTYFPGKPTIRIAKFEPLFSVISSKQRPRKFSIKGSDGKDYKYVLKGHEDIRQDSLVMQLFGLVNTLLKNDSECFKRHLDIQQYPAIPLSPKSGLLGWVPNSDTFHVLIREHRDAKKIPLNIEHWVMLQMAPDYENLTLLQKIEVFTYALDNTKGQDLYKILWLKSRSSETWLERRTTYTRSLAVMSMTGYILGLGDRHPSNLMLDRITGKVIHIDFGDCFEAAILREKYPEKVPFRLTRMLTYAMEVSGIEGSFRITCENVMRVLRDNKESLMAILEAFALDPLIHWGFDLPPQKLTEQTGIPLPLINPSELLRKGAITVEEAANMEAEQQNETKNARAMLVLRRITDKLTGNDIKRFNELDVPEQVDKLIQQATSIERLCQHYIGWCPFW</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, ATP-binding, Cell cycle, Cell membrane, Kinase, Membrane, Nucleotide-binding, Reference proteome, Repeat, Serine/threonine-protein kinase, Transferase, Vacuole</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
calculations</proof>
<mproof type="str">
papers</mproof>
</P35169>
<P37001 type="dict">
<id type="str">
8325</id>
<uniprot_acc type="str">
P37001</uniprot_acc>
<pdb_id type="str">
1MM5</pdb_id>
<bmr_id type="str">
5557</bmr_id>
<bmr_set type="str">
set2</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
26</start>
<end type="str">
43</end>
<category type="str">
ordered</category>
<location type="str">
intramembrane</location>
<pubmed type="str">
12357033</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Although a precise positioning of the helix was not possible, it probably lies on the surface of the membrane, given its amphipathic nature&quot;</statement>
<environment type="str">
OG micelles</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-2-19</color_data>
<comment type="str">
</comment>
<accession type="str">
P37001</accession>
<gene type="str">
PAGP</gene>
<organism type="str">
Escherichia coli (strain K12)</organism>
<protname type="str">
Lipid A palmitoyltransferase PagP</protname>
<sequence type="str">
MNVSKYVAIFSFVFIQLISVGKVFANADEWMTTFRENIAQTWQQPEHYDLYIPAITWHARFAYDKEKTDRYNERPWGGGFGLSRWDEKGNWHGLYAMAFKDSWNKWEPIAGYGWESTWRPLADENFHLGLGFTAGVTARDNWNYIPLPVLLPLASVGYGPVTFQMTYIPGTYNNGNVYFAWMRFQF</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acyltransferase, Cell outer membrane, Direct protein sequencing, Membrane, Reference proteome, Signal, Transferase</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers, structures</mproof>
</P37001>
<P37840 type="dict">
<id type="str">
8327</id>
<uniprot_acc type="str">
P37840</uniprot_acc>
<pdb_id type="str">
1XQ8</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
45</start>
<end type="str">
92</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
15615727</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;As evidenced by a number of biophysical techniques, aS is predominantly a random coil in aqueous solution but has been shown to adopt secondary structure of mostly helical nature upon association with negatively charged SUV or detergent micelle surfaces (10, 12, 13, 17). In every case, the repeat region mediates lipid or detergent interactions, whereas the hydro-philic tail remains free in solution. In the presence of SUV the large majority of aS molecules exist vesicle-bound (10). Based on the backbone1H-1H NOE and secondary chemical shift pattern, helical secondary structure has been attributed to the entire repeat region in the micelle-bound state with the excep-tion of a short stretch near Ser42-Thr44(12, 18). When associ-ated with SUVs of 300–400 Å diameter, electron paramagnetic resonance (EPR) data were interpreted as evidence for an un-interrupted helix extending throughout the entire repeat re-gion (19).&quot;</statement>
<environment type="str">
SDS micelle, 70% SDS, 30% DPC</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-45-92</color_data>
<comment type="str">
</comment>
<accession type="str">
P37840</accession>
<gene type="str">
SNCA</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Alpha-synuclein</protname>
<sequence type="str">
MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Alzheimer disease, Amyloid, Cell junction, Copper, Cytoplasm, Direct protein sequencing, Disease mutation, Membrane, Metal-binding, Neurodegeneration, Nucleus, Parkinson disease, Parkinsonism, Phosphoprotein, Reference proteome, Repeat, Secreted, Synapse, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
papers</mproof>
</P37840>
<P46531 type="dict">
<id type="str">
8328</id>
<uniprot_acc type="str">
P46531</uniprot_acc>
<pdb_id type="str">
5KZO</pdb_id>
<bmr_id type="str">
30147</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
1767</start>
<end type="str">
1769</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
28439555</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Within the cytosolic juxtamembrane domain of Notch, membrane surface association of the Leu-Trp-Phe1769 segment is interesting in light of its overlap with the Trp-Phe-Pro1770 motif, which is known to be essential for the binding of the RBPJ-associated molecule (RAM) domain to a transcriptional activation partner CSL. Our results suggest that the Trp-Phe-Pro1770 motif may normally be “tucked away” via membrane surface association, making it unavailable for interaction with CSL or other proteins until the entire NICD is released from the membrane by γ-secretase cleavage.&quot; ... &quot;The reentrant loop in the C-terminal JMD was maintained throughout the simulations.&quot;</statement>
<environment type="str">
DHPC/DMPC_bicelle</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-55-57</color_data>
<comment type="str">
</comment>
<accession type="str">
P46531</accession>
<gene type="str">
NOTCH1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Neurogenic locus notch homolog protein 1</protname>
<sequence type="str">
MPPLLAPLLCLALLPALAARGPRCSQPGETCLNGGKCEAANGTEACVCGGAFVGPRCQDPNPCLSTPCKNAGTCHVVDRRGVADYACSCALGFSGPLCLTPLDNACLTNPCRNGGTCDLLTLTEYKCRCPPGWSGKSCQQADPCASNPCANGGQCLPFEASYICHCPPSFHGPTCRQDVNECGQKPGLCRHGGTCHNEVGSYRCVCRATHTGPNCERPYVPCSPSPCQNGGTCRPTGDVTHECACLPGFTGQNCEENIDDCPGNNCKNGGACVDGVNTYNCRCPPEWTGQYCTEDVDECQLMPNACQNGGTCHNTHGGYNCVCVNGWTGEDCSENIDDCASAACFHGATCHDRVASFYCECPHGRTGLLCHLNDACISNPCNEGSNCDTNPVNGKAICTCPSGYTGPACSQDVDECSLGANPCEHAGKCINTLGSFECQCLQGYTGPRCEIDVNECVSNPCQNDATCLDQIGEFQCICMPGYEGVHCEVNTDECASSPCLHNGRCLDKINEFQCECPTGFTGHLCQYDVDECASTPCKNGAKCLDGPNTYTCVCTEGYTGTHCEVDIDECDPDPCHYGSCKDGVATFTCLCRPGYTGHHCETNINECSSQPCRHGGTCQDRDNAYLCFCLKGTTGPNCEINLDDCASSPCDSGTCLDKIDGYECACEPGYTGSMCNINIDECAGNPCHNGGTCEDGINGFTCRCPEGYHDPTCLSEVNECNSNPCVHGACRDSLNGYKCDCDPGWSGTNCDINNNECESNPCVNGGTCKDMTSGYVCTCREGFSGPNCQTNINECASNPCLNQGTCIDDVAGYKCNCLLPYTGATCEVVLAPCAPSPCRNGGECRQSEDYESFSCVCPTGWQGQTCEVDINECVLSPCRHGASCQNTHGGYRCHCQAGYSGRNCETDIDDCRPNPCHNGGSCTDGINTAFCDCLPGFRGTFCEEDINECASDPCRNGANCTDCVDSYTCTCPAGFSGIHCENNTPDCTESSCFNGGTCVDGINSFTCLCPPGFTGSYCQHDVNECDSQPCLHGGTCQDGCGSYRCTCPQGYTGPNCQNLVHWCDSSPCKNGGKCWQTHTQYRCECPSGWTGLYCDVPSVSCEVAAQRQGVDVARLCQHGGLCVDAGNTHHCRCQAGYTGSYCEDLVDECSPSPCQNGATCTDYLGGYSCKCVAGYHGVNCSEEIDECLSHPCQNGGTCLDLPNTYKCSCPRGTQGVHCEINVDDCNPPVDPVSRSPKCFNNGTCVDQVGGYSCTCPPGFVGERCEGDVNECLSNPCDARGTQNCVQRVNDFHCECRAGHTGRRCESVINGCKGKPCKNGGTCAVASNTARGFICKCPAGFEGATCENDARTCGSLRCLNGGTCISGPRSPTCLCLGPFTGPECQFPASSPCLGGNPCYNQGTCEPTSESPFYRCLCPAKFNGLLCHILDYSFGGGAGRDIPPPLIEEACELPECQEDAGNKVCSLQCNNHACGWDGGDCSLNFNDPWKNCTQSLQCWKYFSDGHCDSQCNSAGCLFDGFDCQRAEGQCNPLYDQYCKDHFSDGHCDQGCNSAECEWDGLDCAEHVPERLAAGTLVVVVLMPPEQLRNSSFHFLRELSRVLHTNVVFKRDAHGQQMIFPYYGREEELRKHPIKRAAEGWAAPDALLGQVKASLLPGGSEGGRRRRELDPMDVRGSIVYLEIDNRQCVQASSQCFQSATDVAAFLGALASLGSLNIPYKIEAVQSETVEPPPPAQLHFMYVAAAAFVLLFFVGCGVLLSRKRRRQHGQLWFPEGFKVSEASKKKRREPLGEDSVGLKPLKNASDGALMDDNQNEWGDEDLETKKFRFEEPVVLPDLDDQTDHRQWTQQHLDAADLRMSAMAPTPPQGEVDADCMDVNVRGPDGFTPLMIASCSGGGLETGNSEEEEDAPAVISDFIYQGASLHNQTDRTGETALHLAARYSRSDAAKRLLEASADANIQDNMGRTPLHAAVSADAQGVFQILIRNRATDLDARMHDGTTPLILAARLAVEGMLEDLINSHADVNAVDDLGKSALHWAAAVNNVDAAVVLLKNGANKDMQNNREETPLFLAAREGSYETAKVLLDHFANRDITDHMDRLPRDIAQERMHHDIVRLLDEYNLVRSPQLHGAPLGGTPTLSPPLCSPNGYLGSLKPGVQGKKVRKPSSKGLACGSKEAKDLKARRKKSQDGKGCLLDSSGMLSPVDSLESPHGYLSDVASPPLLPSPFQQSPSVPLNHLPGMPDTHLGIGHLNVAAKPEMAALGGGGRLAFETGPPRLSHLPVASGTSTVLGSSSGGALNFTVGGSTSLNGQCEWLSRLQSGMVPNQYNPLRGSVAPGPLSTQAPSLQHGMVGPLHSSLAASALSQMMSYQGLPSTRLATQPHLVQTQQVQPQNLQMQQQNLQPANIQQQQSLQPPPPPPQPHLGVSSAASGHLGRSFLSGEPSQADVQPLGPSSLAVHTILPQESPALPTSLPSSLVPPVTAAQFLTPPSQHSYSSPVDNTPSHQLQVPEHPFLTPSPESPDQWSSSSPHSNVSDWSEGVSSPPTSMQSQIARIPEAFK</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Activator, Angiogenesis, ANK repeat, Calcium, Cell membrane, Developmental protein, Differentiation, Direct protein sequencing, Disease mutation, Disulfide bond, EGF-like domain, Glycoprotein, Hydroxylation, Isopeptide bond, Membrane, Metal-binding, Notch signaling pathway, Nucleus, Phosphoprotein, Polymorphism, Receptor, Reference proteome, Repeat, Signal, Transcription, Transcription regulation, Transmembrane, Transmembrane helix, Ubl conjugation</keywords>
<tm_data type="str">
1736-1756</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-24-44</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
papers</mproof>
</P46531>
<P51161 type="dict">
<id type="str">
8329</id>
<uniprot_acc type="str">
P51161</uniprot_acc>
<pdb_id type="str">
2MM3</pdb_id>
<bmr_id type="str">
19843</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
0</start>
<end type="str">
0</end>
<category type="str">
ordered</category>
<location type="str">
intracellular</location>
<pubmed type="str">
26613247</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The helical region is additionally thought to be a key determinant in the interactions of iLBPs with membranes [32, 33]. An important difference though is that, while in FABPs [26] and some of the reported CRBP structures [34, 35] the helical region shows a considerable disorder in the apo state, in human I‐BABP it is well defined in both the free [9] and the bound forms.&quot;</statement>
<environment type="str">
aqueous</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P51161</accession>
<gene type="str">
FABP6</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Gastrotropin</protname>
<sequence type="str">
MAFTGKFEMESEKNYDEFMKLLGISSDVIEKARNFKIVTEVQQDGQDFTWSQHYSGGHTMTNKFTVGKESNIQTMGGKTFKATVQMEGGKLVVNFPNYHQTSEIVGDKLVEVSTIGGVTYERVSKRLA</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative promoter usage, Cytoplasm, Lipid transport, Lipid-binding, Membrane, Polymorphism, Reference proteome, Transport</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</P51161>
<P54710 type="dict">
<id type="str">
8332</id>
<uniprot_acc type="str">
P54710</uniprot_acc>
<pdb_id type="str">
2MKV</pdb_id>
<bmr_id type="str">
19797</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
51</start>
<end type="str">
63</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
24794573</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;water-exposed regions (Pro10-Pro16 and the C-terminus) exhibiting enhanced mobility.&quot; ... &quot;Beyond the helical regions, the backbone of extracellular Trp4, Tyr5 and Leu6 and cytoplasmic Lys55, Arg56, and Arg57 associate with the micelle-water interface.&quot;</statement>
<environment type="str">
SDS</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-51-63</color_data>
<comment type="str">
See Figure 1 24794573</comment>
<accession type="str">
P54710</accession>
<gene type="str">
FXYD2</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Sodium/potassium-transporting ATPase subunit gamma</protname>
<sequence type="str">
MTGLSMDGGGSPKGDVDPFYYDYETVRNGGLIFAGLAFIVGLLILLSRRFRCGGNKKRRQINEDEP</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Disease mutation, Ion transport, Membrane, Potassium, Potassium transport, Primary hypomagnesemia, Reference proteome, Sodium, Sodium transport, Sodium/potassium transport, Transmembrane, Transmembrane helix, Transport</keywords>
<tm_data type="str">
29-46</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
A-29-46</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
calculations, papers</proof>
<mproof type="str">
papers</mproof>
</P54710>
<P55957 type="dict">
<id type="str">
8335</id>
<uniprot_acc type="str">
P55957</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
0</start>
<end type="str">
0</end>
<category type="str">
ordered</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19670908</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Here we describe the interactions of full-length tBID with BCL-XL in aqueous solution.&quot; ... &quot;Although full-length tBID already has a significant amount of α-helical secondary structure in its free state, the NMR and ITC data show that its three-dimensional conformation is stabilized by binding BCL-XL.&quot;</statement>
<environment type="str">
aqueous</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P55957</accession>
<gene type="str">
BID</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
BH3-interacting domain death agonist</protname>
<sequence type="str">
MDCEVNNGSSLRDECITNLLVFGFLQSCSDNSFRRELDALGHELPVLAPQWEGYDELQTDGNRSSHSRLGRIEADSESQEDIIRNIARHLAQVGDSMDRSIPPGLVNGLALQLRNTSRSEEDRNRDLATALEQLLQAYPRDMEKEKTMLVLALLLAKKVASHTPSLLRDVFHTTVNFINQNLRTYVRSLARNGMD</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Apoptosis, Cytoplasm, Membrane, Mitochondrion, Mitochondrion outer membrane, Phosphoprotein, Polymorphism, Reference proteome, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</P55957>
<P60201 type="dict">
<id type="str">
8336</id>
<uniprot_acc type="str">
P60201</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
258</start>
<end type="str">
277</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
26561987</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Melittin is one of the most widely studied amphiphatic membrane-lytic peptides. In a crystalline state, this 26 amino acid peptide can form a helix structure in which residues 2–11 from an α-helix followed by a kink (residues 11–13), another less defined α-helix (residues 13–23), and a highly basic unstructured C-terminus.(43)&quot; ... &quot;Both melittin and the PLP peptide have basic residues near their C-terminus and can form amphipathic helices that interact with lipid membranes.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P60201</accession>
<gene type="str">
PLP1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Myelin proteolipid protein</protname>
<sequence type="str">
MGLLECCARCLVGAPFASLVATGLCFFGVALFCGCGHEALTGTEKLIETYFSKNYQDYEYLINVIHAFQYVIYGTASFFFLYGALLLAEGFYTTGAVRQIFGDYKTTICGKGLSATVTGGQKGRGSRGQHQAHSLERVCHCLGKWLGHPDKFVGITYALTVVWLLVFACSAVPVYIYFNTWTTCQSIAFPSKTSASIGSLCADARMYGVLPWNAFPGKVCGSNLLSICKTAEFQMTFHLFIAAFVGAAATLVSLLTFMIAATYNFAVLKLMGRGTKF</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cell membrane, Direct protein sequencing, Disease mutation, Disulfide bond, Hereditary spastic paraplegia, Leukodystrophy, Lipoprotein, Membrane, Neurodegeneration, Palmitate, Phosphoprotein, Reference proteome, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
10-36;64-88;152-177;234-260</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P60201>
<P60484 type="dict">
<id type="str">
8337</id>
<uniprot_acc type="str">
P60484</uniprot_acc>
<pdb_id type="str">
1D5R</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,A</chain>
<start type="str">
260</start>
<end type="str">
269</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
25461777</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The CBR3 loop (PTEN260–269) with its basic AAs (K260, K263, K266, K267 and K269) binds strongly to PS and PIPs, and its hydrophobic L265 sidechain snorkels into the hydrophobic membrane core&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-254-263</color_data>
<comment type="str">
MemMoRF is in a loop.</comment>
<accession type="str">
P60484</accession>
<gene type="str">
PTEN</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN</protname>
<sequence type="str">
MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLLHRGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTKNDLDKANKDKANRYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQITKV</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative initiation, Alternative splicing, Apoptosis, Autism spectrum disorder, Cytoplasm, Disease mutation, Hydrolase, Isopeptide bond, Lipid metabolism, Lipid-binding, Neurogenesis, Nucleus, Phosphoprotein, Polymorphism, Protein phosphatase, Reference proteome, Secreted, Tumor suppressor, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P60484>
<P61013 type="dict">
<id type="str">
8339</id>
<uniprot_acc type="str">
P61013</uniprot_acc>
<pdb_id type="str">
1FJP</pdb_id>
<bmr_id type="str">
4907</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
2</start>
<end type="str">
16</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
14507721</pubmed>
<doi type="str">
</doi>
<statement type="str">
</statement>
<environment type="str">
organic solvent</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-4-16</color_data>
<comment type="str">
</comment>
<accession type="str">
P61013</accession>
<gene type="str">
PLN</gene>
<organism type="str">
Sus scrofa</organism>
<protname type="str">
Cardiac phospholamban</protname>
<sequence type="str">
MDKVQYLTRSAIRRASTIEMPQQARQNLQNLFINFCLILICLLLICIIVMLL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Endoplasmic reticulum, Lipoprotein, Membrane, Mitochondrion, Palmitate, Phosphoprotein, Reference proteome, Sarcoplasmic reticulum, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
32-52</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-32-52</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations</proof>
<mproof type="str">
other species</mproof>
</P61013>
<P61015 type="dict">
<id type="str">
8342</id>
<uniprot_acc type="str">
P61015</uniprot_acc>
<pdb_id type="str">
2LPF</pdb_id>
<bmr_id type="str">
18256</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
1</start>
<end type="str">
16</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
23968132</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Hence, the structural ensemble of pS16-PLN suggests that phosphorylation at Ser16 dramatically alters the conformational fluctuations of PLN and destabilises the secondary structure elements.&quot; ... &quot;We then repeated the analysis for pS16-PLN. Our analysis indicates that phosphorylation at Ser16 induces a redistribution of the Boltzmann weights of the four states of PLN (Fig. 5). We found that the T state of pS16-PLN has a decreased population (37%) with respect to the unphosphorylated form (55%), and that the R′ and R states significantly increase in population (from 7% to 13% and from 4% to 12%, respectively). The result that the R state trebles its population upon phosphorylation is consistent with previous NMR34 and EPR36 results. Also, the increase in the population of the excited state is directly correlated to the loss of inhibitory function upon phosphorylation34, 36, 44. The reduction in the number of contacts for the R state is more pronounced for pS16-PLN, indicating a higher tendency of the N-terminal region to detach from the micelle surface (Fig. 6). This finding could arise from charge repulsion introduced upon phosphorylation.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-2-17</color_data>
<comment type="str">
</comment>
<accession type="str">
P61015</accession>
<gene type="str">
PLN</gene>
<organism type="str">
Oryctolagus cuniculus</organism>
<protname type="str">
Cardiac phospholamban</protname>
<sequence type="str">
MEKVQYLTRSAIRRASTIEMPQQARQNLQNLFINFCLILICLLLICIIVMLL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Endoplasmic reticulum, Lipoprotein, Membrane, Mitochondrion, Palmitate, Phosphoprotein, Reference proteome, Sarcoplasmic reticulum, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
32-52</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-33-53</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers, structures</mproof>
</P61015>
<P63045 type="dict">
<id type="str">
8344</id>
<uniprot_acc type="str">
P63045</uniprot_acc>
<pdb_id type="str">
2KOG</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
77</start>
<end type="str">
88</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19918058</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Motions on the ps-ns time-scale, as well as amide hydrogen-exchange on the 10 ms time-scale provide strong evidence that helix I, but not helix II interacts with the micelle surface.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-80-91</color_data>
<comment type="str">
</comment>
<accession type="str">
P63045</accession>
<gene type="str">
VAMP2</gene>
<organism type="str">
Rattus norvegicus</organism>
<protname type="str">
Vesicle-associated membrane protein 2</protname>
<sequence type="str">
MSATAATVPPAAPAGEGGPPAPPPNLTSNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKLKRKYWWKNLKMMIILGVICAIILIIIIVYFST</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Cell junction, Cell membrane, Coiled coil, Cytoplasmic vesicle, Direct protein sequencing, Membrane, Phosphoprotein, Reference proteome, Synapse, Synaptosome, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
95-114</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-98-117</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, papers</proof>
<mproof type="str">
papers, DisProt</mproof>
</P63045>
<P69428 type="dict">
<id type="str">
8348</id>
<uniprot_acc type="str">
P69428</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
22</start>
<end type="str">
44</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
21683683</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;NMR and CD spectroscopy of TatAH2 show that it adopts a predominantly helical structure in a membrane environment while remaining unstructured in aqueous solution. Differential scanning calorimetry studies also reveal that TatAH2 interacts with DPPG lipids but not with DPPC, suggesting that negatively charged phospholipid head groups contribute to the membrane interactions with TatA.&quot;</statement>
<environment type="str">
DPPG / DPPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P69428</accession>
<gene type="str">
TATA</gene>
<organism type="str">
Escherichia coli (strain K12)</organism>
<protname type="str">
Sec-independent protein translocase protein TatA</protname>
<sequence type="str">
MGGISIWQLLIIAVIVVLLFGTKKLGSIGSDLGASIKGFKKAMSDDEPKQDKTSQDADFTAKTIADKQADTNQEQAKTEDAKRHDKEQV</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell inner membrane, Cell membrane, Direct protein sequencing, Membrane, Protein transport, Reference proteome, Translocation, Transmembrane, Transmembrane helix, Transport</keywords>
<tm_data type="str">
1-21</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt, calculations</proof>
<mproof type="str">
calculations, papers</mproof>
</P69428>
<P69539 type="dict">
<id type="str">
8350</id>
<uniprot_acc type="str">
P69539</uniprot_acc>
<pdb_id type="str">
1MZT</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
31</start>
<end type="str">
40</end>
<category type="str">
ordered</category>
<location type="str">
extracellular</location>
<pubmed type="str">
12592011</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The 16‐Å‐long IP helix (residues 8–18) is amphipathic and rests on the membrane surface, with the boundary separating the polar and apolar residues parallel to the lipid bilayer surface, and the apolar residues facing the hydrocarbon core of the lipid bilayer (Fig. 3C).&quot; ... &quot;The resulting structure, shown in Figure 3, is particularly appealing because the dihedral angles of the connecting turn do not disrupt the sense of helix winding as the protein structure makes the transition from the N‐terminal IP helix to the C‐terminal TM helix. This is suggestive of a helix‐wind‐up conformational change during the phage assembly process, whereby tightening the winding around the connecting turn forces the IP helix to tilt up and to form the single, continuous, long α‐helix observed in the phage‐bound protein structure (Opella et al. 1987; Glucksman et al. 1992; Marvin et al. 1994).&quot;</statement>
<environment type="str">
POPC/POPG</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-8-17</color_data>
<comment type="str">
</comment>
<accession type="str">
P69539</accession>
<gene type="str">
VIII</gene>
<organism type="str">
Enterobacteria phage fd</organism>
<protname type="str">
Capsid protein G8P</protname>
<sequence type="str">
MKKSLVLKASVAVATLVPMLSFAAEGDDPAKAAFDSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKAS</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Capsid protein, Direct protein sequencing, Helical capsid protein, Host membrane, Membrane, Signal, Transmembrane, Transmembrane helix, Virion</keywords>
<tm_data type="str">
45-65</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-22-42</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</P69539>
<P69541 type="dict">
<id type="str">
8352</id>
<uniprot_acc type="str">
P69541</uniprot_acc>
<pdb_id type="str">
2CPS</pdb_id>
<bmr_id type="str">
4197</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
32</start>
<end type="str">
40</end>
<category type="str">
ordered</category>
<location type="str">
extracellular</location>
<pubmed type="str">
9735296</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;the helix can now be defined more precisely: it comprises residues 8 to 16. This helix was found to be located at the surface of the micelle (Papavoine et al., 1994) showing considerable motional freedom on the nanosecond and picosecond time-scale&quot; ... &quot;Superposition of the different low-energy conformers (Figure 3(b)) shows that the hinge region (residues 17 to 24) has a structure that resembles an α-helix&quot; ... &quot;The latter residues (8, 12 and 15) are also important in the micellar system and show interactions with the micellar molecules Papavoine et al 1994, Papavoine et al 1995. The high-resolution structure of gVIIIp in SDS and DodPCho micelles has been determined. The structure consists of two well defined α-helices. A small amphipathic helix running from residues 8 to 16 and a longer hydrophobic helix from residues 25 to 45. The two helices are connected by a hinge region, which has a high α-helical content. The hinge region is less well defined than the two α-helices, probably as a result of protein mobility. This allows the amphipathic helix to move with respect to the hydrophobic helix. This mobility is on and away from the surface of the micelle, confirmed by results showing interactions between residues from the amphipathic helix and the detergent molecules. This interaction originates predominantly from the large side-chain molecules, which are located on one side of the amphipathic helix. The motion of the residues in the hinge region is the basis for the transition of the structural form of the gene-VIII protein in the membrane-bound form to that in the phage particle.&quot;</statement>
<environment type="str">
SDS</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-9-17</color_data>
<comment type="str">
</comment>
<accession type="str">
P69541</accession>
<gene type="str">
VIII</gene>
<organism type="str">
Enterobacteria phage M13</organism>
<protname type="str">
Capsid protein G8P</protname>
<sequence type="str">
MKKSLVLKASVAVATLVPMLSFAAEGDDPAKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKAS</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Capsid protein, Helical capsid protein, Host cell inner membrane, Host cell membrane, Host membrane, Membrane, Reference proteome, Signal, Transmembrane, Transmembrane helix, Virion</keywords>
<tm_data type="str">
48-68</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-25-45</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</P69541>
<P70444 type="dict">
<id type="str">
8353</id>
<uniprot_acc type="str">
P70444</uniprot_acc>
<pdb_id type="str">
1DDB</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
147</start>
<end type="str">
192</end>
<category type="str">
ordered</category>
<location type="str">
intracellular</location>
<pubmed type="str">
15501827</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Our data demonstrate that p15 BID upon targeting membranes partially unfolds and H6-H8 insert into the bilayer, yet maintaining an α-helical conformation. Most surprisingly, the helices do not adopt a transmembrane orientation but are parallel to the membrane surface with small tilting angles.&quot;</statement>
<environment type="str">
aqueous</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P70444</accession>
<gene type="str">
BID</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
BH3-interacting domain death agonist</protname>
<sequence type="str">
MDSEVSNGSGLGAEHITDLLVFGFLQSSGCTRQELEVLGRELPVQAYWEADLEDELQTDGSQASRSFNQGRIEPDSESQEEIIHNIARHLAQIGDEMDHNIQPTLVRQLAAQFMNGSLSEEDKRNCLAKALDEVKTAFPRDMENDKAMLIMTMLLAKKVASHAPSLLRDVFHTTVNFINQNLFSYVRNLVRNEMD</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Apoptosis, Cytoplasm, Membrane, Mitochondrion, Mitochondrion outer membrane, Phosphoprotein, Reference proteome, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</P70444>
<P78504 type="dict">
<id type="str">
8357</id>
<uniprot_acc type="str">
P78504</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
1203</start>
<end type="str">
1213</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
22465068</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;J1C24 displays a marked helical propensity and undergoes a coil–helix transition in the presence of negatively charged, but not zwitterionic, lysophospholipid micelles. Phosphorylation at different positions drastically decreases the helical propensity of the peptides and abolishes the coil–helix transition triggered by lysophospholipid micelles. We propose that phosphorylation of residues upstream of the PDZ binding motif may shift the equilibrium from an ordered, membrane-bound, interfacial form of Jagged-1 C-terminal region to a more disordered form&quot; ... &quot;A possible scenario consistent with the observed line widths, relaxation and solvent exchange data is given by the presence of regions that are partially or totally embedded in the micelle (h1, h2, and h3), regions that bind the surface of the micelle, probably in a dynamical way (h4), and other regions that do not significantly interact with the micelle and freely tumble in solution (the C-terminal PDZ binding motif).&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P78504</accession>
<gene type="str">
JAG1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Protein jagged-1</protname>
<sequence type="str">
MRSPRTRGRSGRPLSLLLALLCALRAKVCGASGQFELEILSMQNVNGELQNGNCCGGARNPGDRKCTRDECDTYFKVCLKEYQSRVTAGGPCSFGSGSTPVIGGNTFNLKASRGNDRNRIVLPFSFAWPRSYTLLVEAWDSSNDTVQPDSIIEKASHSGMINPSRQWQTLKQNTGVAHFEYQIRVTCDDYYYGFGCNKFCRPRDDFFGHYACDQNGNKTCMEGWMGPECNRAICRQGCSPKHGSCKLPGDCRCQYGWQGLYCDKCIPHPGCVHGICNEPWQCLCETNWGGQLCDKDLNYCGTHQPCLNGGTCSNTGPDKYQCSCPEGYSGPNCEIAEHACLSDPCHNRGSCKETSLGFECECSPGWTGPTCSTNIDDCSPNNCSHGGTCQDLVNGFKCVCPPQWTGKTCQLDANECEAKPCVNAKSCKNLIASYYCDCLPGWMGQNCDININDCLGQCQNDASCRDLVNGYRCICPPGYAGDHCERDIDECASNPCLNGGHCQNEINRFQCLCPTGFSGNLCQLDIDYCEPNPCQNGAQCYNRASDYFCKCPEDYEGKNCSHLKDHCRTTPCEVIDSCTVAMASNDTPEGVRYISSNVCGPHGKCKSQSGGKFTCDCNKGFTGTYCHENINDCESNPCRNGGTCIDGVNSYKCICSDGWEGAYCETNINDCSQNPCHNGGTCRDLVNDFYCDCKNGWKGKTCHSRDSQCDEATCNNGGTCYDEGDAFKCMCPGGWEGTTCNIARNSSCLPNPCHNGGTCVVNGESFTCVCKEGWEGPICAQNTNDCSPHPCYNSGTCVDGDNWYRCECAPGFAGPDCRININECQSSPCAFGATCVDEINGYRCVCPPGHSGAKCQEVSGRPCITMGSVIPDGAKWDDDCNTCQCLNGRIACSKVWCGPRPCLLHKGHSECPSGQSCIPILDDQCFVHPCTGVGECRSSSLQPVKTKCTSDSYYQDNCANITFTFNKEMMSPGLTTEHICSELRNLNILKNVSAEYSIYIACEPSPSANNEIHVAISAEDIRDDGNPIKEITDKIIDLVSKRDGNSSLIAAVAEVRVQRRPLKNRTDFLVPLLSSVLTVAWICCLVTAFYWCLRKRRKPGSHTHSASEDNTTNNVREQLNQIKNPIEKHGANTVPIKDYENKNSKMSKIRTHNSEVEEDDMDKHQQKARFAKQPAYTLVDREEKPPNGTPTKHPNWTNKQDNRDLESAQSLNRMEYIV</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Calcium, Deafness, Developmental protein, Disease mutation, Disulfide bond, EGF-like domain, Glycoprotein, Membrane, Notch signaling pathway, Polymorphism, Reference proteome, Repeat, Signal, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
1068-1093</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
papers</mproof>
</P78504>
<Q02297-10 type="dict">
<id type="str">
8359</id>
<uniprot_acc type="str">
Q02297-10</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
58</start>
<end type="str">
69</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
25944317</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;In this study, we carried out structural characterization of recombinantly produced NRG1 type III N-terminal cytoplasmic domain (NRG1-III-Nct). The results strongly suggest an intrinsically disordered structure for NRG1-III-Nct. Metal binding by the cytoplasmic domain was verified by different techniques, and it is likely that metal and membrane binding are connected to partial folding of this domain.&quot; ... &quot;The protein showed helical conformation with increasing TFE concentration (Fig. 3f). This result is a sign of possible protein folding upon binding to an interaction partner, such as a membrane surface or metal ions. TFE lowers the solvent dielectric constant, thereby providing membrane-like conditions in solution.&quot;</statement>
<environment type="str">
TFE</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
Q02297-10</accession>
<gene type="str">
NA</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Isoform 10 of Pro-neuregulin-1, membrane-bound isoform</protname>
<sequence type="str">
MEIYSPDMSEVAAERSSSPSTQLSADPSLDGLPAAEDMPEPQTEDGRTPGLVGLAVPCCACLEAERLRGCLNSEKICIVPILACLVSLCLCIAGLKWVFVDKIFEYDSPTHLDPGGLGQDPIISLDATAASAVWVSSEAYTSPVSRAQSESEVQVTVQGDKAVVSFEPSAAPTPKNRIFAFSFLPSTAPSFPSPTRNPEVRTPKSATQPQTTETNLQTAPKLSTSTSTTGTSHLVKCAEKEKTFCVNGGECFMVKDLSNPSRYLCKCPNEFTGDRCQNYVMASFYSTSTPFLSLPE</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cell membrane, Chromosomal rearrangement, Direct protein sequencing, Disulfide bond, EGF-like domain, Glycoprotein, Growth factor, Immunoglobulin domain, Membrane, Nucleus, Polymorphism, Reference proteome, Secreted, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
243-265</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
papers</mproof>
</Q02297-10>
<Q03463 type="dict">
<id type="str">
8360</id>
<uniprot_acc type="str">
Q03463</uniprot_acc>
<pdb_id type="str">
2KNU</pdb_id>
<bmr_id type="str">
16477</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
317</start>
<end type="str">
327</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
19891955</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Circular Dichroism data indicate that the peptide exhibits a clear propensity to adopt a helical folding in different membrane mimicking media, such as mixtures of water with fluorinated alcohols and phospholipids, with a slight preference for negative charged bilayers.&quot; ... &quot;Drawing a consensus from all the predictions, reported in Fig. 1A, the existence of three helical regions—H1, H2 and H3—could be hypothesized in the C-terminal domain of E1. H1 is the shortest and the most hydrophilic helix, whereas H2 and H3 are more hydrophobic and show the features of transmembrane helices. The helical wheel representations of the three helices (Fig. 1B) show that all of them are amphipathic&quot; ... &quot;cholesterol induces a conformational change in the peptide, independently on the lipid charge&quot; ... &quot;According to the qualitative analysis based on the bar-diagram, the refined structure can be described as two helical stretches, a short one spanning from Ala 319 to Met 323 and a second, longer helix from Thr 329 to Leu 338. Unfortunately the great number of overlapping signals in N-terminal part does not allow a better definition of this region, but the presence of a longer helical segment cannot be excluded as suggested from the difference between the measured Hα chemical shift and the random coils reported in Fig. 3B.&quot;</statement>
<environment type="str">
HFIP/water</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-3-13</color_data>
<comment type="str">
In HFIP/water, H1 is presented as a nascent helix.</comment>
<accession type="str">
Q03463</accession>
<gene type="str">
NA</gene>
<organism type="str">
Hepatitis C virus genotype 1b (isolate HC-J1)</organism>
<protname type="str">
Genome polyprotein</protname>
<sequence type="str">
MSTIPKPQRKTKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVRATRKTSERSQPRGRRQPIPKVRRPEGRTWAQPGYPWPLYGNEGCGWAGWLLSPRGSRPSWGPTDPRRRSRNLGKVIDTLTCGFADLMGYIPLVGAPLGGAARALAHGVRVLEDGVNYATGNLPGCSFSIFLLALLSCLTVPASAYQVRNSTGLYHVTNDCPNSSIVYEAHDAILHTPGCVPCVREGNVSRCWVAMTPTVATRDGKLPATQLRRHIDLLVGSATLCSALYVGDLCGSVFLIGQLFTFSPRRHWTTQGCNCSIYPGHITGHRMAWDMMMNWSPTAALVMAQLLRIPQAILDMIAGAHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDAETIVSGGQAARAMSGLVSLFTPGAKQNIQLINTNGSWHINSTALNCNESLNTGWLAGLIYQHKFNSSGCPERLASCRRLTDFDQGWGPISHANGSGPDQRPYCWHYPPKPCGIVPAKSVCGPVYCFTPSPVVVGTTDRSGAPTYNWGANDTDVFVLNNTRPPLGNWFGCTWMNSTGFTKVCGAPPCVIGGGGNNTLHCPTDCFRKHPEATYSRCGSGPWITPRCLVDYPYRLWHYPCTINYTIFKVRMYVGGVEHRLDAACNWTRGERCDLEDRDRSELSPLLLSTTQWQVLPCSFTTLPALSTGLIHLHQNIVDVQYLYGVGSSIASWAIKWEYVVLLFLLLADARVCSCLWMMLLISQAEAALENLVILNAASLAGTRGLVSFLVFFCFAWYLKGRWVPGAAYALYGMWPLLLLLLALPQRAYALDTEVAASCGGVVLVGLMALTLSPYYKRCISWCLWWLQYFLTRVEAQLHVWVPPLNVRGGRDAVILLMCVVHPTLVFDITKLLLAVLGPLWILQASLLKVPYFVRVQGLLRICALARKMVGGHYVQMAIIKLGALTGTYVYNHLTPLRDWAHNGLRDLAVAVEPVVFSQMETKLITWGADTAACGDIINGLPVSARKGREILLGPADGMVSKGWRLLAPITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQTFLATCINGVCWTVYHGAGTRTIASPKGPVIQMYTNVDQDLVGWPAPQGARSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGPLLCPAGHVVGIFRAAVCTRGVAKAVDFIPVESLETTMRSPVFTDNSSPPAVPQSFQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYSTYGKFLADGGCSGGAYDIIICDECHSTDATSVLGIGTVLDQAETAGARLVVLATATPPGSITVPHANIEEVALSTTGEIPFYGKAIPLEAIKGGRHLIFCHSKKKCDELAAKLVALGVNAVAYYRGLDVSVIPTSGDVVVVATDALMTGYTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTLPQDAVSRTQRRGRTGRGKPGIYRFVAPGERPSGMFDSSILCECYDTGCAWYELTPAETTVRLRAYMNTPGLPVCQDHLEFWEGVFTGLTHIDAHFLSQTKQGGENFPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLGAVQGEVTLTHPVTKYIMTCMSADLEVVTSTWVLVGGVLAALAAYCLSTGCVVIVGRIVLSGRPAIIPDREVLYREFDEMEECSQHLPYIEQGMMLAEQFKQKALGLLQTASRQAEVIAPTVQTNWQKLEAFWAKHMWNFISGIQYLAGLSTLPGNPAIASLMAFTAAVTSPLTTSQTLLFNILGGWVAAQLAAPGAATAFVGSGLAGAAVGSVGLGRVLVDILAGYGAGVAGALVAFKIMSGELPSTEDLVNLLPAILSPGALVVGVVCAAILRRHVGPGEGAVQWMNRLIAFASRGNHVSPTHYVPESDAAARVTAILSSLTVTQLLRRLHQWLSSESTTPCSGSWLRDIWDWICEVLSDFKTWLKTKLMPHLPGIPFVSCQHGYKGVWRGDGIMHTRCHCGAEITGHVKNGTMRIVGPKTCRNMWSGTFPINAYTTGPCTPLPAPNYTFALWRVSAEEYVEIRRVGDFHYVTGMTTDNLKCPCQVPSPEFFTELDGVRLHRFAPPCKPLLREEVSFRVGLHDYPVGSQLPCEPEPDVAVLTSMLTDPSHITAAAAGRRLARGSPPSEASSSASQLSAPSLKATCTINHDSPDAELIEANLLWRQEMGGNITRVESENKVVILDSFDPLVAEEDEREISVPAEILRKSRRFTQALPIWARPDYNPPLIETWKKPNYEPPVVHGCPLPPPQSPPVPPPRKKRTVVLTESTLSTALAELAAKSFGSSSTSGITGDNTTTSSEPAPSGCSPDSDAESYSSMPPLEGEPGDPDLSDGSWSTVSSEAGTEDVVCCSMSYTWTGALITPCAAEEQKLPINALSNSLLRHHNLVYSTTSRSACQRQKKVTFDRLQVLDSHYQDVLKEVKAAASKVKANLLSVEEACSLTPPHSAKSKFGYGAKDVRCHARKAVNHINSVWKDLLEDSVTPIQTTIMAKNEVFCVQPEKGGRKPARLIVFPDLGVRVCEKMALYDVVSKLPPAVMGSSYGFQYSPGQRVEFLVQAWKSKRTPMGFSYDTRCFDSTVTESDIRTEEAIYQCCDLDPQARVAIRSLTERLYVGGPLTNSRGENCGYRRCRASGVLTTSCGNTLTCYIKARAACRAAGLQDCTMLVCGDDLVVICESAGVQEDAASLRAFTEAMTRYSAPPGDPPQPEYDLELITSCSSNVSVAHDGTGKRVYYLTRDPTTPLARAAWETARHTPVNSWLGNIIMFAPTLWARMILMTHFFSVLIARDQLEQALDCEIYGACYSIEPLDLPPIIQRLHGLSAFSLHSYSPGEINRVAACLRKLGVPPLRAWRHRARSVRARLLSRGGRAAICGKYLFNWAVRTKLKLTPIAAAGRLDLSGWFTAGYSGGDIYHSVSHARPRWFWFCLLLLAAGVGIYLLPNR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Activation of host autophagy by virus, Apoptosis, ATP-binding, Capsid protein, Clathrin-mediated endocytosis of virus by host, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, G1/S host cell cycle checkpoint dysregulation by virus, Glycoprotein, Helicase, Host cell membrane, Host cytoplasm, Host endoplasmic reticulum, Host lipid droplet, Host membrane, Host mitochondrion, Host nucleus, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host MAVS by virus, Inhibition of host RLR pathway by virus, Inhibition of host STAT1 by virus, Inhibition of host TRAFs by virus, Interferon antiviral system evasion, Ion channel, Ion transport, Lipoprotein, Membrane, Metal-binding, Modulation of host cell cycle by virus, Multifunctional enzyme, Nucleotide-binding, Nucleotidyltransferase, Oncogene, Palmitate, Phosphoprotein, Protease, Ribonucleoprotein, RNA-binding, RNA-directed RNA polymerase, Secreted, Serine protease, SH3-binding, Thiol protease, Transcription, Transcription regulation, Transferase, Transmembrane, Transmembrane helix, Transport, Ubl conjugation, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral ion channel, Viral nucleoprotein, Viral penetration into host cytoplasm, Viral RNA replication, Virion, Virus endocytosis by host, Virus entry into host cell, Zinc</keywords>
<tm_data type="str">
169-189;359-379;726-746;758-778;783-803;814-834;882-902;929-949;1658-1678;1806-1826;1829-1849;1851-1871;1882-1902;2991-3011</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations</proof>
<mproof type="str">
papers</mproof>
</Q03463>
<Q39871 type="dict">
<id type="str">
8361</id>
<uniprot_acc type="str">
Q39871</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
1</start>
<end type="str">
8</end>
<category type="str">
MemMoRF</category>
<location type="str">
unknown</location>
<pubmed type="str">
23325560</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;the 11-mer motif was disordered in aqueous solution, but adopted an α-helix in SDS micelles. NMR diffusion measurements demonstrated that the 11-mer motif was associated with SDS micelles. Paramagnetic quenching NMR experiments further revealed the orientation of the 11-mer motif with respect to the mimetic membrane: the ordered N-terminal segment was inserted into the mimetic membrane, and the disordered C-terminal segment was exposed to water.&quot; ... &quot;the 11‐mer motif was not deeply buried in the center of hydrophobic core of the micelle.&quot;</statement>
<environment type="str">
SDS</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
Q39871</accession>
<gene type="str">
MP2</gene>
<organism type="str">
Glycine max</organism>
<protname type="str">
Late embryongenesis abundant protein</protname>
<sequence type="str">
MASKKQEERAEAAAKVAAKELEQVNRERRDRDFGVVAEQQQQHHQEDQQKRGVIGSMFKAVQDTYENAKEAVVGKKEATNNAYSNTEVIHDVNIQPDDVSATGEVRDISATKTHDIYDSATDNNNNKTGSKVGEYADYASQKAKETKDATMEKAGEYTDYASQKAKEAKKTTMEKGGEYKDYSAEKAKERKDATVNKMGEYKDYAAEKAKEGKDATVNKMGEYKDYAAEKTKEGKDATVNKMGEYKDYTAEKAKEGKDTTLGKLGELKDTASDAAKRAVGYLSGKKEETKEMASETAEATANKAGEMKEATKKKTAETAEAAKNKAGEIKDRAAETAEAAKNKTAETAEVTKNKALEMKDAAKDRTAETTDAAKQKTAQAKENTKENVSGAGETARRKMEEPKLQGKEGYGGRGDKVVVKVEESRPGAIAETLKAADQIAGQTFNDVGRFDEEGVVNVERRKK</sequence>
<comments type="str">
None</comments>
<keywords type="str">
Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</Q39871>
<Q61009 type="dict">
<id type="str">
8363</id>
<uniprot_acc type="str">
Q61009</uniprot_acc>
<pdb_id type="str">
5KTF</pdb_id>
<bmr_id type="str">
30137</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
427</start>
<end type="str">
435</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
28162952</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;We also identify juxtamembrane regions of the extracellular domain of SR-BI that may interact with the lipid surface to facilitate cholesterol transport functions of the receptor.&quot; ... &quot;we also purified an SR-BI fragment (residues 405–445) lacking the hydrophobic transmembrane domain and examined it using NMR. Interestingly, no HSQC peaks were observed when SR-BI(405–445) was initially suspended in an aqueous solution. However, addition of increasing amounts of LPPG detergent resulted in the appearance of peaks (Figure 8D) that corresponded closely to many of the resonances for residues 405–445 observed in the SR-BI(405–475) spectrum (Figure S1). This important observation suggests that SR-BI(405–445) requires a hydrophobic environment to fold into its native structural conformation, thereby suggesting that this region harbors a potential membrane-interacting juxtamembrane domain.&quot;</statement>
<environment type="str">
LPPG</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-25-33</color_data>
<comment type="str">
</comment>
<accession type="str">
Q61009</accession>
<gene type="str">
SCARB1</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
Scavenger receptor class B member 1</protname>
<sequence type="str">
MGGSSRARWVALGLGALGLLFAALGVVMILMVPSLIKQQVLKNVRIDPSSLSFGMWKEIPVPFYLSVYFFEVVNPNEVLNGQKPVVRERGPYVYREFRQKVNITFNDNDTVSFVENRSLHFQPDKSHGSESDYIVLPNILVLGGSILMESKPVSLKLMMTLALVTMGQRAFMNRTVGEILWGYDDPFVHFLNTYLPDMLPIKGKFGLFVGMNNSNSGVFTVFTGVQNFSRIHLVDKWNGLSKIDYWHSEQCNMINGTSGQMWAPFMTPESSLEFFSPEACRSMKLTYNESRVFEGIPTYRFTAPDTLFANGSVYPPNEGFCPCRESGIQNVSTCRFGAPLFLSHPHFYNADPVLSEAVLGLNPNPKEHSLFLDIHPVTGIPMNCSVKMQLSLYIKSVKGIGQTGKIEPVVLPLLWFEQSGAMGGKPLSTFYTQLVLMPQVLHYAQYVLLGLGGLLLLVPIICQLRSQEKCFLFWSGSKKGSQDKEAIQAYSESLMSPAAKGTVLQEAKL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cell membrane, Disulfide bond, Glycoprotein, Lipoprotein, Membrane, Palmitate, Receptor, Reference proteome, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
12-32;441-461</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-39-59</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</Q61009>
<Q61097 type="dict">
<id type="str">
8364</id>
<uniprot_acc type="str">
Q61097</uniprot_acc>
<pdb_id type="str">
2LPE</pdb_id>
<bmr_id type="str">
17045</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
71</start>
<end type="str">
83</end>
<category type="str">
ordered</category>
<location type="str">
intracellular</location>
<pubmed type="str">
23250398</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;CC-SAM functioned as a membrane-binding module. By combining nuclear magnetic resonance spectroscopy and experiments in cultured cells, we found that membrane binding was mediated by helix α3 of the CC motif and that mutating residues in α3 abolished targeting of KSR-1 to the plasma membrane.&quot; ... &quot;Residues 71 to 83 in helix α3 interacted most strongly with the micelle. In order for this to happen, the CC-SAM domain must change its overall conformation. First, helix α2 must disengage from helix α3 to allow helix α3 to interact with the membrane. Furthermore, helices α1 to α2 and helices α4 to α10 would need to have relatively weak interactions with helix α3.&quot;</statement>
<environment type="str">
solvent</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-50-62</color_data>
<comment type="str">
</comment>
<accession type="str">
Q61097</accession>
<gene type="str">
KSR1</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
Kinase suppressor of Ras 1</protname>
<sequence type="str">
MDRAALRAAAMGEKKEGGGGGAAADGGAGAAVSRALQQCGQLQKLIDISIGSLRGLRTKCSVSNDLTQQEIRTLEAKLVKYICKQQQSKLSVTPSDRTAELNSYPRFSDWLYIFNVRPEVVQEIPQELTLDALLEMDEAKAKEMLRRWGASTEECSRLQQALTCLRKVTGLGGEHKMDSGWSSTDARDSSLGPPMDMLSSLGRAGASTQGPRSISVSALPASDSPVPGLSEGLSDSCIPLHTSGRLTPRALHSFITPPTTPQLRRHAKLKPPRTPPPPSRKVFQLLPSFPTLTRSKSHESQLGNRIDDVTPMKFELPHGSPQLVRRDIGLSVTHRFSTKSWLSQVCNVCQKSMIFGVKCKHCRLKCHNKCTKEAPACRITFLPLARLRRTESVPSDINNPVDRAAEPHFGTLPKALTKKEHPPAMNLDSSSNPSSTTSSTPSSPAPFLTSSNPSSATTPPNPSPGQRDSRFSFPDISACSQAAPLSSTADSTRLDDQPKTDVLGVHEAEAEEPEAGKSEAEDDEEDEVDDLPSSRRPWRGPISRKASQTSVYLQEWDIPFEQVELGEPIGQGRWGRVHRGRWHGEVAIRLLEMDGHNQDHLKLFKKEVMNYRQTRHENVVLFMGACMNPPHLAIITSFCKGRTLHSFVRDPKTSLDINKTRQIAQEIIKGMGYLHAKGIVHKDLKSKNVFYDNGKVVITDFGLFGISGVVREERRENQLKLSHDWLCYLAPEIVREMIPGRDEDQLPFSKAADVYAFGTVWYELQARDWPFKHQPAEALIWQIGSGEGVRRVLASVSLGKEVGEILSACWAFDLQERPSFSLLMDMLERLPKLNRRLSHPGHFWKSADINSSKVMPRFERFGLGTLESGNPKM</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, ATP-binding, Cell membrane, Cell projection, Cytoplasm, Endoplasmic reticulum, Kinase, Membrane, Metal-binding, Nucleotide-binding, Phosphoprotein, Reference proteome, Serine/threonine-protein kinase, Transferase, Zinc, Zinc-finger</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</Q61097>
<Q69422 type="dict">
<id type="str">
8365</id>
<uniprot_acc type="str">
Q69422</uniprot_acc>
<pdb_id type="str">
2MKB</pdb_id>
<bmr_id type="str">
19765</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
848</start>
<end type="str">
867</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
24741107</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;In the case of the GBV-B NS2(113–137) peptide, the hydrophobic helix at residues 116 to 135 includes a short stretch of polar and negatively charged amino acids (GENG; aa 129 to 132), which is likely flexible because of the presence of two glycine residues (Fig. 7C). The overall hydrophobic nature of this helix likely explains its prediction as a TM segment (Fig. 1). However, the hydrophobicity together with the dispersion of charged residues in this peptide are compatible with its location in the NS2 cytosolic domain (Fig. 5B), in interaction with the membrane interface (S6) (Fig. 3D and 4H).&quot;</statement>
<environment type="str">
TFE</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-4-23</color_data>
<comment type="str">
Uniprot: TMH, Reference: peripheral</comment>
<accession type="str">
Q69422</accession>
<gene type="str">
NA</gene>
<organism type="str">
Hepatitis GB virus B</organism>
<protname type="str">
Genome polyprotein</protname>
<sequence type="str">
MPVISTQTSPVPAPRTRKNKQTQASYPVSIKTSVERGQRAKRKVQRDARPRNYKIAGIHDGLQTLAQAALPAHGWGRQDPRHKSRNLGILLDYPLGWIGDVTTHTPLVGPLVAGAVVRPVCQIVRLLEDGVNWATGWFGVHLFVVCLLSLACPCSGARVTDPDTNTTILTNCCQRNQVIYCSPSTCLHEPGCVICADECWVPANPYISHPSNWTGTDSFLADHIDFVMGALVTCDALDIGELCGACVLVGDWLVRHWLIHIDLNETGTCYLEVPTGIDPGFLGFIGWMAGKVEAVIFLTKLASQVPYAIATMFSSVHYLAVGALIYYASRGKWYQLLLALMLYIEATSGNPIRVPTGCSIAEFCSPLMIPCPCHSYLSENVSEVICYSPKWTRPVTLEYNNSISWYPYTIPGARGCMVKFKNNTWGCCRIRNVPSYCTMGTDAVWNDTRNTYEACGVTPWLTTAWHNGSALKLAILQYPGSKEMFKPHNWMSGHLYFEGSDTPIVYFYDPVNSTLLPPERWARLPGTPPVVRGSWLQVPQGFYSDVKDLATGLITKDKAWKNYQVLYSATGALSLTGVTTKAVVLILLGLCGSKYLILAYLCYLSLCFGRASGYPLRPVLPSQSYLQAGWDVLSKAQVAPFALIFFICCYLRCRLRYAALLGFVPMAAGLPLTFFVAAAAAQPDYDWWVRLLVAGLVLWAGRDRGPRIALLVGPWPLVALLTLLHLATPASAFDTEIIGGLTIPPVVALVVMSRFGFFAHLLPRCALVNSYLWQRWENWFWNVTLRPERFLLVLVCFPGATYDTLVTFCVCHVALLCLTSSAASFFGTDSRVRAHRMLVRLGKCHAWYSHYVLKFFLLVFGENGVFFYKHLHGDVLPNDFASKLPLQEPFFPFEGKARVYRNEGRRLACGDTVDGLPVVARLGDLVFAGLAMPPDGWAITAPFTLQCLSERGTLSAMAVVMTGIDPRTWTGTIFRLGSLATSYMGFVCDNVLYTAHHGSKGRRLAHPTGSIHPITVDAANDQDIYQPPCGAGSLTRCSCGETKGYLVTRLGSLVEVNKSDDPYWCVCGALPMAVAKGSSGAPILCSSGHVIGMFTAARNSGGSVSQIRVRPLVCAGYHPQYTAHATLDTKPTVPNEYSVQILIAPTGSGKSTKLPLSYMQEKYEVLVLNPSVATTASMPKYMHATYGVNPNCYFNGKCTNTGASLTYSTYGMYLTGACSRNYDVIICDECHATDATTVLGIGKVLTEAPSKNVRLVVLATATPPGVIPTPHANITEIQLTDEGTIPFHGKKIKEENLKKGRHLIFEATKKHCDELANELARKGITAVSYYRGCDISKIPEGDCVVVATDALCTGYTGDFDSVYDCSLMVEGTCHVDLDPTFTMGVRVCGVSAIVKGQRRGRTGRGRAGIYYYVDGSCTPSGMVPECNIVEAFDAAKAWYGLSSTEAQTILDTYRTQPGLPAIGANLDEWADLFSMVNPEPSFVNTAKRTADNYVLLTAAQLQLCHQYGYAAPNDAPRWQGARLGKKPCGVLWRLDGADACPGPEPSEVTRYQMCFTEVNTSGTAALAVGVGVAMAYLAIDTFGATCVRRCWSITSVPTGATVAPVVDEEEIVEECASFIPLEAMVAAIDKLKSTITTTSPFTLETALEKLNTFLGPHAATILAIIEYCCGLVTLPDNPFASCVFAFIAGITTPLPHKIKMFLSLFGGAIASKLTDARGALAFMMAGAAGTALGTWTSVGFVFDMLGGYAAASSTACLTFKCLMGEWPTMDQLAGLVYSAFNPAAGVVGVLSACAMFALTTAGPDHWPNRLLTMLARSNTVCNEYFIATRDIRRKILGILEASTPWSVISACIRWLHTPTEDDCGLIAWGLEIWQYVCNFFVICFNVLKAGVQSMVNIPGCPFYSCQKGYKGPWIGSGMLQARCPCGAELIFSVENGFAKLYKGPRTCSNYWRGAVPVNARLCGSARPDPTDWTSLVVNYGVRDYCKYEKLGDHIFVTAVSSPNVCFTQVPPTLRAAVAVDGVQVQCYLGEPKTPWTTSACCYGPDGKGKTVKLPFRVDGHTPGVRMQLNLRDALETNDCNSINNTPSDEAAVSALVFKQELRRTNQLLEAISAGVDTTKLPAPSIEEVVVRKRQFRARTGSLTLPPPPRSVPGVSCPESLQRSDPLEGPSNLPSSPPVLQLAMPMPLLGAGECNPFTAIGCAMTETGGGPDDLPSYPPKKEVSEWSDGSWSTTTTASSYVTGPPYPKIRGKDSTQSAPAKRPTKKKLGKSEFSCSMSYTWTDVISFKTASKVLSATRAITSGFLKQRSLVYVTEPRDAELRKQKVTINRQPLFPPSYHKQVRLAKEKASKVVGVMWDYDEVAAHTPSKSAKSHITGLRGTDVRSGAARKAVLDLQKCVEAGEIPSHYRQTVIVPKEEVFVKTPQKPTKKPPRLISYPHLEMRCVEKMYYGQVAPDVVKAVMGDAYGFVDPRTRVKRLLSMWSPDAVGATCDTVCFDSTITPEDIMVETDIYSAAKLSDQHRAGIHTIARQLYAGGPMIAYDGREIGYRRCRSSGVYTTSSSNSLTCWLKVNAAAEQAGMKNPRFLICGDDCTVIWKSAGADADKQAMRVFASWMKVMGAPQDCVPQPKYSLEELTSCSSNVTSGITKSGKPYYFLTRDPRIPLGRCSAEGLGYNPSAAWIGYLIHHYPCLWVSRVLAVHFMEQMLFEDKLPETVTFDWYGKNYTVPVEDLPSIIAGVHGIEAFSVVRYTNAEILRVSQSLTDMTMPPLRAWRKKARAVLASAKRRGGAHAKLARFLLWHATSRPLPDLDKTSVARYTTFNYCDVYSPEGDVFVTPQRRLQKFLVKYLAVIVFALGLIAVGLAIS</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Activation of host autophagy by virus, Apoptosis, ATP-binding, Capsid protein, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Glycoprotein, Helicase, Host endoplasmic reticulum, Host membrane, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host MAVS by virus, Inhibition of host RLR pathway by virus, Interferon antiviral system evasion, Ion channel, Ion transport, Lipoprotein, Magnesium, Manganese, Membrane, Metal-binding, Multifunctional enzyme, Nucleotide-binding, Nucleotidyltransferase, Oncogene, Palmitate, Phosphoprotein, Protease, Ribonucleoprotein, RNA-binding, RNA-directed RNA polymerase, Serine protease, SH3-binding, Thiol protease, Transcription, Transcription regulation, Transferase, Transmembrane, Transmembrane helix, Transport, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral ion channel, Viral nucleoprotein, Viral penetration into host cytoplasm, Viral RNA replication, Virion, Virus entry into host cell, Zinc</keywords>
<tm_data type="str">
133-153;324-344;582-602;628-648;660-680;706-726;737-757;790-810;847-867;1565-1585;1653-1673;1678-1698;1722-1742;1783-1803;1864-1884;2844-2864</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-3-23;A-721-741;A-809-829;A-834-854;A-878-898;A-939-959;A-1020-1040;A-2000-2020</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations</proof>
<mproof type="str">
papers</mproof>
</Q69422>
<Q8GT36 type="dict">
<id type="str">
8368</id>
<uniprot_acc type="str">
Q8GT36</uniprot_acc>
<pdb_id type="str">
2FFT</pdb_id>
<bmr_id type="str">
6926</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
94</start>
<end type="str">
98</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
17176085</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The major structural features of TSP9 in SDS micelles include an N-terminal α-helix and a C-terminal helical turn. In addition, secondary chemical shifts and sequential dαN(i, i+2) and dαN(i, i+3) NOE connectivities observed for residues F28–D32 and G59–S62, suggest that these regions are at least partially ordered. The structured elements of TSP9 contain mainly hydrophobic residues. Thus their structures in SDS micelles are likely induced by the hydrophobic environment inside the micelles. Residues in other regions are disordered and remain so even in the presence of SDS micelles. Because SDS and DPC micelles have been serving as good membrane mimics, the disorder-to-order conformational transition of TSP9 upon association with micelles may have significant physiological relevance.&quot; ... &quot;The observation of interactions between the unstructured regions of TSP9 and SDS micelles suggests that these disordered regions may play a role in modulating the membrane association of TSP9. Conceivably, the large number of lysines in these regions may facilitate the attachment of TSP9 to the negatively-charged membrane. Furthermore, the three phosphorylation sites (T46, T53 and T60) are also located in the unstructured region and make contacts with SDS micelles. Thus, it is reasonable to assume that phosphorylation of these sites will lower the membrane association affinity of TSP9.&quot;</statement>
<environment type="str">
SDS</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-75-79</color_data>
<comment type="str">
</comment>
<accession type="str">
Q8GT36</accession>
<gene type="str">
TSP9</gene>
<organism type="str">
Spinacia oleracea</organism>
<protname type="str">
Thylakoid soluble phosphoprotein</protname>
<sequence type="str">
MSSLPFVFGAAASSRVVTAAAAKGTAETKQEKSFVDWLLGKITKEDQFYETDPILRGGDVKSSGSTSGKKGGTTSGKKGTVSIPSKKKNGNGGVFGGLFAKKD</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
calculations, papers</mproof>
</Q8GT36>
<Q8N6T3 type="dict">
<id type="str">
8369</id>
<uniprot_acc type="str">
Q8N6T3</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
192</start>
<end type="str">
231</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
15944734</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Site-directed mutagenesis, limited proteolysis and circular dichroism experiments suggest that the ALPS motif, which is unstructured in solution, inserts bulky hydrophobic residues between loosely packed lipids and forms an amphipathic helix on highly curved membranes.&quot; ... &quot;In conclusion, the mapping experiments presented in Figure 3 demonstrate that the region of ArfGAP1 that binds to highly curved lipid membranes is a motif of about 40 aa (between aa 192 and 231).&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
Q8N6T3</accession>
<gene type="str">
ARFGAP1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
ADP-ribosylation factor GTPase-activating protein 1</protname>
<sequence type="str">
MASPRTRKVLKEVRVQDENNVCFECGAFNPQWVSVTYGIWICLECSGRHRGLGVHLSFVRSVTMDKWKDIELEKMKAGGNAKFREFLESQEDYDPCWSLQEKYNSRAAALFRDKVVALAEGREWSLESSPAQNWTPPQPRTLPSMVHRVSGQPQSVTASSDKAFEDWLNDDLGSYQGAQGNRYVGFGNTPPPQKKEDDFLNNAMSSLYSGWSSFTTGASRFASAAKEGATKFGSQASQKASELGHSLNENVLKPAQEKVKEGKIFDDVSSGVSQLASKVQGVGSKGWRDVTTFFSGKAEGPLDSPSEGHSYQNSGLDHFQNSNIDQSFWETFGSAEPTKTRKSPSSDSWTCADTSTERRSSDSWEVWGSASTNRNSNSDGGEGGEGTKKAVPPAVPTDDGWDNQNW</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Cytoplasm, ER-Golgi transport, Golgi apparatus, GTPase activation, Metal-binding, Phosphoprotein, Polymorphism, Protein transport, Reference proteome, Transport, Zinc, Zinc-finger</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
PFAM, papers</proof>
<mproof type="str">
papers</mproof>
</Q8N6T3>
<Q92542 type="dict">
<id type="str">
8371</id>
<uniprot_acc type="str">
Q92542</uniprot_acc>
<pdb_id type="str">
2N7R</pdb_id>
<bmr_id type="str">
25818</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
696</start>
<end type="str">
700</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
26776682</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;A sequence containing residues V696-A700 from the C-terminal juxtamembrane region is lipid accessible (Fig. 5). This five-residue sequence contains hydrophobic residues. Its interaction with micelles suggests that this region may interact with cell membrane or interact with a hydrophobic region of other proteins, which may be important for γ -secretase complex function.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-41-45</color_data>
<comment type="str">
</comment>
<accession type="str">
Q92542</accession>
<gene type="str">
NCSTN</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Nicastrin</protname>
<sequence type="str">
MATAGGGSGADPGSRGLLRLLSFCVLLAGLCRGNSVERKIYIPLNKTAPCVRLLNATHQIGCQSSISGDTGVIHVVEKEEDLQWVLTDGPNPPYMVLLESKHFTRDLMEKLKGRTSRIAGLAVSLTKPSPASGFSPSVQCPNDGFGVYSNSYGPEFAHCREIQWNSLGNGLAYEDFSFPIFLLEDENETKVIKQCYQDHNLSQNGSAPTFPLCAMQLFSHMHAVISTATCMRRSSIQSTFSINPEIVCDPLSDYNVWSMLKPINTTGTLKPDDRVVVAATRLDSRSFFWNVAPGAESAVASFVTQLAAAEALQKAPDVTTLPRNVMFVFFQGETFDYIGSSRMVYDMEKGKFPVQLENVDSFVELGQVALRTSLELWMHTDPVSQKNESVRNQVEDLLATLEKSGAGVPAVILRRPNQSQPLPPSSLQRFLRARNISGVVLADHSGAFHNKYYQSIYDTAENINVSYPEWLSPEEDLNFVTDTAKALADVATVLGRALYELAGGTNFSDTVQADPQTVTRLLYGFLIKANNSWFQSILRQDLRSYLGDGPLQHYIAVSSPTNTTYVVQYALANLTGTVVNLTREQCQDPSKVPSENKDLYEYSWVQGPLHSNETDRLPRCVRSTARLARALSPAFELSQWSSTEYSTWTESRWKDIRARIFLIASKELELITLTVGFGILIFSLIVTYCINAKADVLFIAPREPGAVSY</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cytoplasmic vesicle, Disease mutation, Disulfide bond, Glycoprotein, Membrane, Notch signaling pathway, Polymorphism, Reference proteome, Signal, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
670-690</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-15-35</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
calculations</proof>
<mproof type="str">
papers</mproof>
</Q92542>
<Q96AC1 type="dict">
<id type="str">
8373</id>
<uniprot_acc type="str">
Q96AC1</uniprot_acc>
<pdb_id type="str">
6U4N</pdb_id>
<bmr_id type="str">
30659</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
entity1</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
74</start>
<end type="str">
83</end>
<category type="str">
ordered</category>
<location type="str">
intracellular</location>
<pubmed type="str">
31590942</pubmed>
<doi type="str">
</doi>
<statement type="str">
</statement>
<environment type="str">
aqueous</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-81-90</color_data>
<comment type="str">
</comment>
<accession type="str">
Q96AC1</accession>
<gene type="str">
FERMT2</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Fermitin family homolog 2</protname>
<sequence type="str">
MALDGIRMPDGCYADGTWELSVHVTDLNRDVTLRVTGEVHIGGVMLKLVEKLDVKKDWSDHALWWEKKRTWLLKTHWTLDKYGIQADAKLQFTPQHKLLRLQLPNMKYVKVKVNFSDRVFKAVSDICKTFNIRHPEELSLLKKPRDPTKKKKKKLDDQSEDEALELEGPLITPGSGSIYSSPGLYSKTMTPTYDAHDGSPLSPTSAWFGDSALSEGNPGILAVSQPITSPEILAKMFKPQALLDKAKINQGWLDSSRSLMEQDVKENEALLLRFKYYSFFDLNPKYDAIRINQLYEQAKWAILLEEIECTEEEMMMFAALQYHINKLSIMTSENHLNNSDKEVDEVDAALSDLEITLEGGKTSTILGDITSIPELADYIKVFKPKKLTLKGYKQYWCTFKDTSISCYKSKEESSGTPAHQMNLRGCEVTPDVNISGQKFNIKLLIPVAEGMNEIWLRCDNEKQYAHWMAACRLASKGKTMADSSYNLEVQNILSFLKMQHLNPDPQLIPEQITTDITPECLVSPRYLKKYKNKQITARILEAHQNVAQMSLIEAKMRFIQAWQSLPEFGITHFIARFQGGKKEELIGIAYNRLIRMDASTGDAIKTWRFSNMKQWNVNWEIKMVTVEFADEVRLSFICTEVDCKVVHEFIGGYIFLSTRAKDQNESLDEEMFYKLTSGWV</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cell adhesion, Cell junction, Cell membrane, Cell projection, Cell shape, Cytoplasm, Cytoskeleton, Lipid-binding, Membrane, Nucleus, Phosphoprotein, Reference proteome, Wnt signaling pathway</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</Q96AC1>
<Q96BM0 type="dict">
<id type="str">
8374</id>
<uniprot_acc type="str">
Q96BM0</uniprot_acc>
<pdb_id type="str">
2LOQ</pdb_id>
<bmr_id type="str">
18221</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
39</start>
<end type="str">
49</end>
<category type="str">
MemMoRF</category>
<location type="str">
unknown</location>
<pubmed type="str">
22609626</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The connecting loops between the transmembrane helices of FAM14B and second and third transmembrane helices of TMEM14C contain an amphiphilic helix, which lies roughly perpendicular to the preceding transmembrane helix.&quot; ... &quot;we can assume that the helices are located close to the surface of the LMPG micelle.&quot;</statement>
<environment type="str">
LMPG</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-48-58</color_data>
<comment type="str">
MemMoRF is in between two disordered regions, only structure for this protein.</comment>
<accession type="str">
Q96BM0</accession>
<gene type="str">
IFI27L1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Interferon alpha-inducible protein 27-like protein 1</protname>
<sequence type="str">
MGKESGWDSGRAAVAAVVGGVVAVGTVLVALSAMGFTSVGIAASSIAAKMMSTAAIANGGGVAAGSLVAILQSVGAAGLSVTSKVIGGFAGTALGAWLGSPPSS</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Apoptosis, Membrane, Polymorphism, Reference proteome, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
14-34;59-79;81-101</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-23-43;A-68-88;A-90-110</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations</proof>
<mproof type="str">
calculations, papers</mproof>
</Q96BM0>
<Q99IB8 type="dict">
<id type="str">
8376</id>
<uniprot_acc type="str">
Q99IB8</uniprot_acc>
<pdb_id type="str">
2KZQ</pdb_id>
<bmr_id type="str">
17011</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
706</start>
<end type="str">
714</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
21147916</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;These structural features, together with the clear propensity of the E2-SC peptide to adopt an α-helical structure upon binding to lipid-like molecules, suggest that the central amphipathic helix associates with the membrane interface, at least transiently, in an inplane topology. The C-terminal helix also appeared to be relatively amphiphilic,&quot; ... &quot;it is located at the membrane interface, maybe in an in-plane topology.&quot;</statement>
<environment type="str">
TFE</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
A-23-31</color_data>
<comment type="str">
</comment>
<accession type="str">
Q99IB8</accession>
<gene type="str">
NA</gene>
<organism type="str">
Hepatitis C virus genotype 2a (isolate JFH-1)</organism>
<protname type="str">
Genome polyprotein</protname>
<sequence type="str">
MSTNPKPQRKTKRNTNRRPEDVKFPGGGQIVGGVYLLPRRGPRLGVRTTRKTSERSQPRGRRQPIPKDRRSTGKAWGKPGRPWPLYGNEGLGWAGWLLSPRGSRPSWGPTDPRHRSRNVGKVIDTLTCGFADLMGYIPVVGAPLSGAARAVAHGVRVLEDGVNYATGNLPGFPFSIFLLALLSCITVPVSAAQVKNTSSSYMVTNDCSNDSITWQLEAAVLHVPGCVPCERVGNTSRCWVPVSPNMAVRQPGALTQGLRTHIDMVVMSATFCSALYVGDLCGGVMLAAQVFIVSPQYHWFVQECNCSIYPGTITGHRMAWDMMMNWSPTATMILAYVMRVPEVIIDIVSGAHWGVMFGLAYFSMQGAWAKVIVILLLAAGVDAGTTTVGGAVARSTNVIAGVFSHGPQQNIQLINTNGSWHINRTALNCNDSLNTGFLAALFYTNRFNSSGCPGRLSACRNIEAFRIGWGTLQYEDNVTNPEDMRPYCWHYPPKPCGVVPARSVCGPVYCFTPSPVVVGTTDRRGVPTYTWGENETDVFLLNSTRPPQGSWFGCTWMNSTGFTKTCGAPPCRTRADFNASTDLLCPTDCFRKHPDATYIKCGSGPWLTPKCLVHYPYRLWHYPCTVNFTIFKIRMYVGGVEHRLTAACNFTRGDRCDLEDRDRSQLSPLLHSTTEWAILPCTYSDLPALSTGLLHLHQNIVDVQYMYGLSPAITKYVVRWEWVVLLFLLLADARVCACLWMLILLGQAEAALEKLVVLHAASAANCHGLLYFAIFFVAAWHIRGRVVPLTTYCLTGLWPFCLLLMALPRQAYAYDAPVHGQIGVGLLILITLFTLTPGYKTLLGQCLWWLCYLLTLGEAMIQEWVPPMQVRGGRDGIAWAVTIFCPGVVFDITKWLLALLGPAYLLRAALTHVPYFVRAHALIRVCALVKQLAGGRYVQVALLALGRWTGTYIYDHLTPMSDWAASGLRDLAVAVEPIIFSPMEKKVIVWGAETAACGDILHGLPVSARLGQEILLGPADGYTSKGWKLLAPITAYAQQTRGLLGAIVVSMTGRDRTEQAGEVQILSTVSQSFLGTTISGVLWTVYHGAGNKTLAGLRGPVTQMYSSAEGDLVGWPSPPGTKSLEPCKCGAVDLYLVTRNADVIPARRRGDKRGALLSPRPISTLKGSSGGPVLCPRGHVVGLFRAAVCSRGVAKSIDFIPVETLDVVTRSPTFSDNSTPPAVPQTYQVGYLHAPTGSGKSTKVPVAYAAQGYKVLVLNPSVAATLGFGAYLSKAHGINPNIRTGVRTVMTGEAITYSTYGKFLADGGCASGAYDIIICDECHAVDATSILGIGTVLDQAETAGVRLTVLATATPPGSVTTPHPDIEEVGLGREGEIPFYGRAIPLSCIKGGRHLIFCHSKKKCDELAAALRGMGLNAVAYYRGLDVSIIPAQGDVVVVATDALMTGYTGDFDSVIDCNVAVTQAVDFSLDPTFTITTQTVPQDAVSRSQRRGRTGRGRQGTYRYVSTGERASGMFDSVVLCECYDAGAAWYDLTPAETTVRLRAYFNTPGLPVCQDHLEFWEAVFTGLTHIDAHFLSQTKQAGENFAYLVAYQATVCARAKAPPPSWDAMWKCLARLKPTLAGPTPLLYRLGPITNEVTLTHPGTKYIATCMQADLEVMTSTWVLAGGVLAAVAAYCLATGCVSIIGRLHVNQRVVVAPDKEVLYEAFDEMEECASRAALIEEGQRIAEMLKSKIQGLLQQASKQAQDIQPAMQASWPKVEQFWARHMWNFISGIQYLAGLSTLPGNPAVASMMAFSAALTSPLSTSTTILLNIMGGWLASQIAPPAGATGFVVSGLVGAAVGSIGLGKVLVDILAGYGAGISGALVAFKIMSGEKPSMEDVINLLPGILSPGALVVGVICAAILRRHVGPGEGAVQWMNRLIAFASRGNHVAPTHYVTESDASQRVTQLLGSLTITSLLRRLHNWITEDCPIPCSGSWLRDVWDWVCTILTDFKNWLTSKLFPKLPGLPFISCQKGYKGVWAGTGIMTTRCPCGANISGNVRLGSMRITGPKTCMNTWQGTFPINCYTEGQCAPKPPTNYKTAIWRVAASEYAEVTQHGSYSYVTGLTTDNLKIPCQLPSPEFFSWVDGVQIHRFAPTPKPFFRDEVSFCVGLNSYAVGSQLPCEPEPDADVLRSMLTDPPHITAETAARRLARGSPPSEASSSVSQLSAPSLRATCTTHSNTYDVDMVDANLLMEGGVAQTEPESRVPVLDFLEPMAEEESDLEPSIPSECMLPRSGFPRALPAWARPDYNPPLVESWRRPDYQPPTVAGCALPPPKKAPTPPPRRRRTVGLSESTISEALQQLAIKTFGQPPSSGDAGSSTGAGAAESGGPTSPGEPAPSETGSASSMPPLEGEPGDPDLESDQVELQPPPQGGGVAPGSGSGSWSTCSEEDDTTVCCSMSYSWTGALITPCSPEEEKLPINPLSNSLLRYHNKVYCTTSKSASQRAKKVTFDRTQVLDAHYDSVLKDIKLAASKVSARLLTLEEACQLTPPHSARSKYGFGAKEVRSLSGRAVNHIKSVWKDLLEDPQTPIPTTIMAKNEVFCVDPAKGGKKPARLIVYPDLGVRVCEKMALYDITQKLPQAVMGASYGFQYSPAQRVEYLLKAWAEKKDPMGFSYDTRCFDSTVTERDIRTEESIYQACSLPEEARTAIHSLTERLYVGGPMFNSKGQTCGYRRCRASGVLTTSMGNTITCYVKALAACKAAGIVAPTMLVCGDDLVVISESQGTEEDERNLRAFTEAMTRYSAPPGDPPRPEYDLELITSCSSNVSVALGPRGRRRYYLTRDPTTPLARAAWETVRHSPINSWLGNIIQYAPTIWVRMVLMTHFFSILMVQDTLDQNLNFEMYGSVYSVNPLDLPAIIERLHGLDAFSMHTYSHHELTRVASALRKLGAPPLRVWKSRARAVRASLISRGGKAAVCGRYLFNWAVKTKLKLTPLPEARLLDLSSWFTVGAGGGDIFHSVSRARPRSLLFGLLLLFVGVGLFLLPAR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Activation of host autophagy by virus, Apoptosis, ATP-binding, Capsid protein, Clathrin-mediated endocytosis of virus by host, Disulfide bond, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, G1/S host cell cycle checkpoint dysregulation by virus, Glycoprotein, Helicase, Host cell membrane, Host cytoplasm, Host endoplasmic reticulum, Host lipid droplet, Host membrane, Host mitochondrion, Host nucleus, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host MAVS by virus, Inhibition of host RLR pathway by virus, Inhibition of host STAT1 by virus, Inhibition of host TRAFs by virus, Interferon antiviral system evasion, Ion channel, Ion transport, Lipoprotein, Membrane, Metal-binding, Modulation of host cell cycle by virus, Multifunctional enzyme, Nucleotide-binding, Nucleotidyltransferase, Oncogene, Palmitate, Phosphoprotein, Protease, Ribonucleoprotein, RNA-binding, RNA-directed RNA polymerase, Secreted, Serine protease, SH3-binding, Thiol protease, Transcription, Transcription regulation, Transferase, Transmembrane, Transmembrane helix, Transport, Ubl conjugation, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral ion channel, Viral nucleoprotein, Viral penetration into host cytoplasm, Viral RNA replication, Virion, Virus endocytosis by host, Virus entry into host cell, Zinc</keywords>
<tm_data type="str">
169-189;359-379;730-750;762-782;787-807;818-838;886-906;933-953;1662-1682;1810-1830;1833-1853;1855-1875;1886-1906;3013-3033</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-47-67;A-79-99;A-104-124;A-135-155;A-203-223;A-250-270;A-979-999;A-1127-1147;A-1150-1170;A-1172-1192;A-1203-1223;A-2330-2350</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</Q99IB8>
<Q9GUM7 type="dict">
<id type="str">
8378</id>
<uniprot_acc type="str">
Q9GUM7</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
137</start>
<end type="str">
143</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
28596722</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The CPX-1 CTD contains tandem lipid binding motifs – termed the C-terminal (CT) and amphipathic helix (AH) motifs – that together sense membrane curvature to preferentially bind highly curved membranes (Snead et al., 2014).&quot; ... &quot;we conclude that the CT motif likely binds to micelles in a disordered conformation devoid of secondary structure.&quot;</statement>
<environment type="str">
DPC</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
Q9GUM7</accession>
<gene type="str">
CPX-1</gene>
<organism type="str">
Caenorhabditis elegans</organism>
<protname type="str">
Putative complexin-1</protname>
<sequence type="str">
MAGFLMKQMVGNQLSEVTGGLGMKDDGGEKTETGEDPEVIAARLEQEERRKEKHRKMENEREKMRQGIRDKYAIKKKEEGVAMDFTEGRIGGPRKTPEEIAAEMNAEDDSLIGQLGLTEQVEKAKTMATGAFETVKGFFPFGK</sequence>
<comments type="str">
None</comments>
<keywords type="str">
Coiled coil, Cytoplasm, Exocytosis, Neurotransmitter transport, Reference proteome, Transport</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</Q9GUM7>
<Q9NR61 type="dict">
<id type="str">
8379</id>
<uniprot_acc type="str">
Q9NR61</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
662</start>
<end type="str">
685</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
18435556</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;a fragment spanning the intracellular region of human Delta-4 is intrinsically disordered in solution, yet at the same time, in response to changes in the physico-chemical environment, can form inter-convertible secondary structures through its plastic C-terminal region (P3)&quot; ... &quot;The mainly helical conformation of P3 in the presence of SDS may, on the other hand, be representative of the membrane-bound, uncomplexed form of Delta-4&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
SP</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
Q9NR61</accession>
<gene type="str">
DLL4</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Delta-like protein 4</protname>
<sequence type="str">
MAAASRSASGWALLLLVALWQQRAAGSGVFQLQLQEFINERGVLASGRPCEPGCRTFFRVCLKHFQAVVSPGPCTFGTVSTPVLGTNSFAVRDDSSGGGRNPLQLPFNFTWPGTFSLIIEAWHAPGDDLRPEALPPDALISKIAIQGSLAVGQNWLLDEQTSTLTRLRYSYRVICSDNYYGDNCSRLCKKRNDHFGHYVCQPDGNLSCLPGWTGEYCQQPICLSGCHEQNGYCSKPAECLCRPGWQGRLCNECIPHNGCRHGTCSTPWQCTCDEGWGGLFCDQDLNYCTHHSPCKNGATCSNSGQRSYTCTCRPGYTGVDCELELSECDSNPCRNGGSCKDQEDGYHCLCPPGYYGLHCEHSTLSCADSPCFNGGSCRERNQGANYACECPPNFTGSNCEKKVDRCTSNPCANGGQCLNRGPSRMCRCRPGFTGTYCELHVSDCARNPCAHGGTCHDLENGLMCTCPAGFSGRRCEVRTSIDACASSPCFNRATCYTDLSTDTFVCNCPYGFVGSRCEFPVGLPPSFPWVAVSLGVGLAVLLVLLGMVAVAVRQLRLRRPDDGSREAMNNLSDFQKDNLIPAAQLKNTNQKKELEVDCGLDKSNCGKQQNHTLDYNLAPGPLGRGTMPGKFPHSDKSLGEKAPLRLHSEKPECRISAICSPRDSMYQSVCLISEERNECVIATEV</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Angiogenesis, Cell membrane, Developmental protein, Differentiation, Direct protein sequencing, Disease mutation, Disulfide bond, EGF-like domain, Glycoprotein, Membrane, Neurogenesis, Notch signaling pathway, Reference proteome, Repeat, Sensory transduction, Signal, Transmembrane, Transmembrane helix, Vision</keywords>
<tm_data type="str">
530-550</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
DisProt</proof>
<mproof type="str">
papers</mproof>
</Q9NR61>
<Q9WMX2 type="dict">
<id type="str">
8380</id>
<uniprot_acc type="str">
Q9WMX2</uniprot_acc>
<pdb_id type="str">
2KWZ</pdb_id>
<bmr_id type="str">
16892</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
873</start>
<end type="str">
878</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
21187906</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The first small helix (64–69), which includes the short hydrophobic stretch VILL might be located in the membrane interface, possibly in-plane of the membrane.&quot; ... &quot;helices observed in TMS2 and TMS3 are not classical membrane anchoring TM helices, since they contain polar and charged residues. In addition, the TMS2 helix exhibits an amphipathic character suggesting that it could associate with the membrane interface, at least transiently. Based on physicochemical considerations, a transmembrane orientation of this helix is expected to be achieved only upon interaction with another complementary transmembrane segment neutralizing the polar and charged residues located in the hydrophobic core of the membrane. In this context, it is possible that the transmembrane association of TMS2 and TMS3 occurs in the translocon during NS2 biosynthesis. Alternatively, these TMS might be first released into the cytosol where they could interact at the membrane interface and then associate with the membrane to adopt their final transmembrane topology.&quot; ... &quot;three transmembrane, mainly helical segments (TMS1: 4–23; TMS2: 27–49; and TMS3: 72–94), connected by a small cytosolic loop (aa 24–26) and by a luminal segment (aa 50–71) containing a short helix supposed to interact with the membrane interface.&quot;</statement>
<environment type="str">
TFE</environment>
<tmp_category type="str">
P</tmp_category>
<color_data type="str">
A-4-9</color_data>
<comment type="str">
MemMoRF is in between two disordered regions, only structure for this protein region.</comment>
<accession type="str">
Q9WMX2</accession>
<gene type="str">
NA</gene>
<organism type="str">
Hepatitis C virus genotype 1b (isolate Con1)</organism>
<protname type="str">
Genome polyprotein</protname>
<sequence type="str">
MSTNPKPQRKTKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVRATRKTSERSQPRGRRQPIPKARQPEGRAWAQPGYPWPLYGNEGLGWAGWLLSPRGSRPSWGPTDPRRRSRNLGKVIDTLTCGFADLMGYIPLVGAPLGGAARALAHGVRVLEDGVNYATGNLPGCSFSIFLLALLSCLTIPASAYEVRNVSGVYHVTNDCSNASIVYEAADMIMHTPGCVPCVRENNSSRCWVALTPTLAARNASVPTTTIRRHVDLLVGAAALCSAMYVGDLCGSVFLVAQLFTFSPRRHETVQDCNCSIYPGHVTGHRMAWDMMMNWSPTAALVVSQLLRIPQAVVDMVAGAHWGVLAGLAYYSMVGNWAKVLIVMLLFAGVDGGTYVTGGTMAKNTLGITSLFSPGSSQKIQLVNTNGSWHINRTALNCNDSLNTGFLAALFYVHKFNSSGCPERMASCSPIDAFAQGWGPITYNESHSSDQRPYCWHYAPRPCGIVPAAQVCGPVYCFTPSPVVVGTTDRFGVPTYSWGENETDVLLLNNTRPPQGNWFGCTWMNSTGFTKTCGGPPCNIGGIGNKTLTCPTDCFRKHPEATYTKCGSGPWLTPRCLVHYPYRLWHYPCTVNFTIFKVRMYVGGVEHRLEAACNWTRGERCNLEDRDRSELSPLLLSTTEWQVLPCSFTTLPALSTGLIHLHQNVVDVQYLYGIGSAVVSFAIKWEYVLLLFLLLADARVCACLWMMLLIAQAEAALENLVVLNAASVAGAHGILSFLVFFCAAWYIKGRLVPGAAYALYGVWPLLLLLLALPPRAYAMDREMAASCGGAVFVGLILLTLSPHYKLFLARLIWWLQYFITRAEAHLQVWIPPLNVRGGRDAVILLTCAIHPELIFTITKILLAILGPLMVLQAGITKVPYFVRAHGLIRACMLVRKVAGGHYVQMALMKLAALTGTYVYDHLTPLRDWAHAGLRDLAVAVEPVVFSDMETKVITWGADTAACGDIILGLPVSARRGREIHLGPADSLEGQGWRLLAPITAYSQQTRGLLGCIITSLTGRDRNQVEGEVQVVSTATQSFLATCVNGVCWTVYHGAGSKTLAGPKGPITQMYTNVDQDLVGWQAPPGARSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPVSYLKGSSGGPLLCPSGHAVGIFRAAVCTRGVAKAVDFVPVESMETTMRSPVFTDNSSPPAVPQTFQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGAPITYSTYGKFLADGGCSGGAYDIIICDECHSTDSTTILGIGTVLDQAETAGARLVVLATATPPGSVTVPHPNIEEVALSSTGEIPFYGKAIPIETIKGGRHLIFCHSKKKCDELAAKLSGLGLNAVAYYRGLDVSVIPTSGDVIVVATDALMTGFTGDFDSVIDCNTCVTQTVDFSLDPTFTIETTTVPQDAVSRSQRRGRTGRGRMGIYRFVTPGERPSGMFDSSVLCECYDAGCAWYELTPAETSVRLRAYLNTPGLPVCQDHLEFWESVFTGLTHIDAHFLSQTKQAGDNFPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGPTPLLYRLGAVQNEVTTTHPITKYIMACMSADLEVVTSTWVLVGGVLAALAAYCLTTGSVVIVGRIILSGKPAIIPDREVLYREFDEMEECASHLPYIEQGMQLAEQFKQKAIGLLQTATKQAEAAAPVVESKWRTLEAFWAKHMWNFISGIQYLAGLSTLPGNPAIASLMAFTASITSPLTTQHTLLFNILGGWVAAQLAPPSAASAFVGAGIAGAAVGSIGLGKVLVDILAGYGAGVAGALVAFKVMSGEMPSTEDLVNLLPAILSPGALVVGVVCAAILRRHVGPGEGAVQWMNRLIAFASRGNHVSPTHYVPESDAAARVTQILSSLTITQLLKRLHQWINEDCSTPCSGSWLRDVWDWICTVLTDFKTWLQSKLLPRLPGVPFFSCQRGYKGVWRGDGIMQTTCPCGAQITGHVKNGSMRIVGPRTCSNTWHGTFPINAYTTGPCTPSPAPNYSRALWRVAAEEYVEVTRVGDFHYVTGMTTDNVKCPCQVPAPEFFTEVDGVRLHRYAPACKPLLREEVTFLVGLNQYLVGSQLPCEPEPDVAVLTSMLTDPSHITAETAKRRLARGSPPSLASSSASQLSAPSLKATCTTRHDSPDADLIEANLLWRQEMGGNITRVESENKVVILDSFEPLQAEEDEREVSVPAEILRRSRKFPRAMPIWARPDYNPPLLESWKDPDYVPPVVHGCPLPPAKAPPIPPPRRKRTVVLSESTVSSALAELATKTFGSSESSAVDSGTATASPDQPSDDGDAGSDVESYSSMPPLEGEPGDPDLSDGSWSTVSEEASEDVVCCSMSYTWTGALITPCAAEETKLPINALSNSLLRHHNLVYATTSRSASLRQKKVTFDRLQVLDDHYRDVLKEMKAKASTVKAKLLSVEEACKLTPPHSARSKFGYGAKDVRNLSSKAVNHIRSVWKDLLEDTETPIDTTIMAKNEVFCVQPEKGGRKPARLIVFPDLGVRVCEKMALYDVVSTLPQAVMGSSYGFQYSPGQRVEFLVNAWKAKKCPMGFAYDTRCFDSTVTENDIRVEESIYQCCDLAPEARQAIRSLTERLYIGGPLTNSKGQNCGYRRCRASGVLTTSCGNTLTCYLKAAAACRAAKLQDCTMLVCGDDLVVICESAGTQEDEASLRAFTEAMTRYSAPPGDPPKPEYDLELITSCSSNVSVAHDASGKRVYYLTRDPTTPLARAAWETARHTPVNSWLGNIIMYAPTLWARMILMTHFFSILLAQEQLEKALDCQIYGACYSIEPLDLPQIIQRLHGLSAFSLHSYSPGEINRVASCLRKLGVPPLRVWRHRARSVRARLLSQGGRAATCGKYLFNWAVRTKLKLTPIPAASQLDLSSWFVAGYSGGDIYHSLSRARPRWFMWCLLLLSVGVGIYLLPNR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Activation of host autophagy by virus, Apoptosis, ATP-binding, Capsid protein, Clathrin-mediated endocytosis of virus by host, Disulfide bond, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, G1/S host cell cycle checkpoint dysregulation by virus, Glycoprotein, Helicase, Host cell membrane, Host cytoplasm, Host endoplasmic reticulum, Host lipid droplet, Host membrane, Host mitochondrion, Host nucleus, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host MAVS by virus, Inhibition of host RLR pathway by virus, Inhibition of host STAT1 by virus, Inhibition of host TRAFs by virus, Interferon antiviral system evasion, Ion channel, Ion transport, Lipoprotein, Membrane, Metal-binding, Modulation of host cell cycle by virus, Multifunctional enzyme, Nucleotide-binding, Nucleotidyltransferase, Oncogene, Palmitate, Phosphoprotein, Protease, Ribonucleoprotein, RNA-binding, RNA-directed RNA polymerase, Secreted, Serine protease, SH3-binding, Thiol protease, Transcription, Transcription regulation, Transferase, Transmembrane, Transmembrane helix, Transport, Ubl conjugation, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral ion channel, Viral nucleoprotein, Viral penetration into host cytoplasm, Viral RNA replication, Virion, Virus endocytosis by host, Virus entry into host cell, Zinc</keywords>
<tm_data type="str">
169-189;359-379;726-746;758-778;783-803;814-834;882-902;929-949;1658-1678;1806-1826;1829-1849;1851-1871;1882-1902;2990-3010</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
A-14-34;A-61-81;A-790-810;A-938-958;A-961-981;A-983-1003;A-1014-1034;A-2122-2142</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations</proof>
<mproof type="str">
papers</mproof>
</Q9WMX2>
<Q9Y6G1 type="dict">
<id type="str">
8382</id>
<uniprot_acc type="str">
Q9Y6G1</uniprot_acc>
<pdb_id type="str">
2LOP</pdb_id>
<bmr_id type="str">
18220</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
6</start>
<end type="str">
19</end>
<category type="str">
ordered</category>
<location type="str">
intracellular</location>
<pubmed type="str">
22609626</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;For HIGD1A, HIGD1B, TMEM141 and TMEM14A, the first transmembrane helix was preceded by an amphiphilic N-terminal helix; this helix is presumably located at the micelle-water interface&quot;</statement>
<environment type="str">
LMPG</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-15-28</color_data>
<comment type="str">
ST4, Uniprot TM regions are not correlate with the structure.</comment>
<accession type="str">
Q9Y6G1</accession>
<gene type="str">
TMEM14A</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Transmembrane protein 14A</protname>
<sequence type="str">
MDLIGFGYAALVTFGSIFGYKRRGGVPSLIAGLFVGCLAGYGAYRVSNDKRDVKVSLFTAFFLATIMGVRFKRSKKIMPAGLVAGLSLMMILRLVLLLL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Apoptosis, Endoplasmic reticulum, Membrane, Mitochondrion, Polymorphism, Reference proteome, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
1-21;24-44;79-99</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-10-30;A-33-53;A-88-108</tm_region>
<term type="str">
bistable helix</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</Q9Y6G1>
<Q9Y6I3 type="dict">
<id type="str">
8383</id>
<uniprot_acc type="str">
Q9Y6I3</uniprot_acc>
<pdb_id type="str">
1INZ</pdb_id>
<bmr_id type="str">
4959</bmr_id>
<bmr_set type="str">
set1</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
1</start>
<end type="str">
18</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
11161217</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Many residues in site 1 showed large chemical shift changes, suggesting a large structural change upon phosphoinositide binding (Fig. 2A). Deletion of the entire site 1 region (NH2-terminal, 18 residues) resulted in a complete loss of PtdIns(4,5)P2binding (Fig. 2F). Of the positively charged residues within this region, only Arg8 was shown to be essential for binding (Fig. 2F). Results suggest that site 1, the NH2-terminal unstructured region, was necessary for binding and adopted a specific conformation upon binding to PtdIns(4,5)P2.&quot;</statement>
<environment type="str">
aqueous</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
Q9Y6I3</accession>
<gene type="str">
EPN1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Epsin-1</protname>
<sequence type="str">
MSTSSLRRQMKNIVHNYSEAEIKVREATSNDPWGPSSSLMSEIADLTYNVVAFSEIMSMIWKRLNDHGKNWRHVYKAMTLMEYLIKTGSERVSQQCKENMYAVQTLKDFQYVDRDGKDQGVNVREKAKQLVALLRDEDRLREERAHALKTKEKLAQTATASSAAVGSGPPPEAEQAWPQSSGEEELQLQLALAMSKEEADQPPSCGPEDDAQLQLALSLSREEHDKEERIRRGDDLRLQMAIEESKRETGGKEESSLMDLADVFTAPAPAPTTDPWGGPAPMAAAVPTAAPTSDPWGGPPVPPAADPWGGPAPTPASGDPWRPAAPAGPSVDPWGGTPAPAAGEGPTPDPWGSSDGGVPVSGPSASDPWTPAPAFSDPWGGSPAKPSTNGTTAAGGFDTEPDEFSDFDRLRTALPTSGSSAGELELLAGEVPARSPGAFDMSGVRGSLAEAVGSPPPAATPTPTPPTRKTPESFLGPNAALVDLDSLVSRPGPTPPGAKASNPFLPGGGPATGPSVTNPFQPAPPATLTLNQLRLSPVPPVPGAPPTYISPLGGGPGLPPMMPPGPPAPNTNPFLL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cell membrane, Coated pit, Cytoplasm, Endocytosis, Lipid-binding, Membrane, Methylation, Nucleus, Phosphoprotein, Reference proteome, Repeat, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
True</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</Q9Y6I3>
<Q9YDF8 type="dict">
<id type="str">
8385</id>
<uniprot_acc type="str">
Q9YDF8</uniprot_acc>
<pdb_id type="str">
2KYH</pdb_id>
<bmr_id type="str">
16957</bmr_id>
<bmr_set type="str">
set2</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
27</start>
<end type="str">
34</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
20851706</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The solution structure identified an additional α-helix in the KvAP VSD at the N-terminus, S0, which is also observed in the Kv1.2-Kv2.1 paddle chimera structure 10. This helix was not modeled in the KvAP VSD crystal structure, perhaps because of its flexibility across multiple time scales prevented significant electron density to be observed. S0 is roughly positioned between the intracellular ends of S1 and S2, and the mix of NOEs to water, hydrophilic and hydrophobic D7PC resonances establish its interfacial location. This helix is conserved among other VSDs&quot; ... &quot;The amphipathic nature of this helix and its position at the edge of the VSD structure suggest that it interacts with the interfacial region of the D7PC micelle&quot; ... &quot;The S0 helix is also highly mobile, consistent with its poor placement within the NMR ensemble&quot; ... &quot;Combined with high R1 and low hetNOE, this suggests that S0 exhibits mobility across multiple timescales, further supporting the hypothesis that S0 is dislodged in the absence of a membrane bilayer.&quot;</statement>
<environment type="str">
DHPC</environment>
<tmp_category type="str">
MP</tmp_category>
<color_data type="str">
A-10-17</color_data>
<comment type="str">
</comment>
<accession type="str">
Q9YDF8</accession>
<gene type="str">
APE_0955</gene>
<organism type="str">
Aeropyrum pernix (strain ATCC 700893 / DSM 11879 / JCM 9820 / NBRC 100138 / K1)</organism>
<protname type="str">
Voltage-gated potassium channel</protname>
<sequence type="str">
MSVERWVFPGCSVMARFRRGLSDLGGRVRNIGDVMEHPLVELGVSYAALLSVIVVVVEYTMQLSGEYLVRLYLVDLILVIILWADYAYRAYKSGDPAGYVKKTLYEIPALVPAGLLALIEGHLAGLGLFRLVRLLRFLRILLIISRGSKFLSAIADAADKIRFYHLFGAVMLTVLYGAFAIYIVEYPDPNSSIKSVFDALWWAVVTATTVGYGDVVPATPIGKVIGIAVMLTGISALTLLIGTVSNMFQKILVGEPEPSCSPAKLAEMVSSMSEEEFEEFVRTLKNLRRLENSMK</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell membrane, Ion channel, Ion transport, Membrane, Potassium, Potassium channel, Potassium transport, Reference proteome, Transmembrane, Transmembrane helix, Transport, Voltage-gated channel</keywords>
<tm_data type="str">
39-63;68-92;109-125;129-145;160-184;222-253</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-22-46;A-51-75;A-92-108;A-112-128;A-143-167;A-205-236</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
calculations, papers</proof>
<mproof type="str">
papers</mproof>
</Q9YDF8>
<A0A140GKJ0 type="dict">
<id type="str">
8389</id>
<uniprot_acc type="str">
A0A140GKJ0</uniprot_acc>
<pdb_id type="str">
5U1D</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
C</chain>
<start type="str">
22</start>
<end type="str">
31</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
16835230</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Its active domain was mapped to residues 3–34 and shown to encode all functional properties of the full-length protein. The active domain of ICP47 was reconstituted into oriented phospholipid bilayers and studied by proton-decoupled 15N and 2H solid-state NMR spectroscopy. In phospholipid bilayers, the protein adopts a helix-loop-helix structure, where the average tilt angle of the helices relative to the membrane surface is 15° ( 7°). The alignment of both structured domains exhibits a mosaic spread of 10°. A flexible dynamic loop encompassing residues 17 and18 separates the two helices.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
C-5-14;C-22-31</color_data>
<comment type="str">
</comment>
<accession type="str">
A0A140GKJ0</accession>
<gene type="str">
US12</gene>
<organism type="str">
Human herpesvirus 1</organism>
<protname type="str">
ICP47 protein</protname>
<sequence type="str">
MSWALEMADTFLDNMRVGPRTYADVRDEINKRGREDREAARTAVHDPERPLLRSPGLLPEIAPNASLGVVHRRTGGTVTDSPRNPVTR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Early protein, Host cytoplasm, Host-virus interaction, Inhibition of host adaptive immune response by virus, Inhibition of host TAP by virus, Viral immunoevasion</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</A0A140GKJ0>
<P02686-5 type="dict">
<id type="str">
8390</id>
<uniprot_acc type="str">
P02686-5</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
83</start>
<end type="str">
94</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
18326633</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;In aqueous solution, the classic 18.5 kDa isoform of MBP is primarily disordered, but has transient α-helices that are stabilized by membrane-mimetic conditions&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P02686-5</accession>
<gene type="str">
NA</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Isoform 5 of Myelin basic protein</protname>
<sequence type="str">
MASQKRPSQRHGSKYLATASTMDHARHGFLPRHRDTGILDSIGRFFGGDRGAPKRGSGKDSHHPARTAHYGSLPQKSHGRTQDENPVVHFFKNIVTPRTPPPSQGKGRGLSLSRFSWGAEGQRPGFGYGGRASDYKSAHKGFKGVDAQGTLSKIFKLGGRDSRSGSPMARR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Autoimmune encephalomyelitis, Cell membrane, Citrullination, Direct protein sequencing, Membrane, Methylation, Nucleus, Phosphoprotein, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
homology, papers</proof>
<mproof type="str">
homology, papers</mproof>
</P02686-5>
<P02730 type="dict">
<id type="str">
8397</id>
<uniprot_acc type="str">
P02730</uniprot_acc>
<pdb_id type="str">
4YZF</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,B,C,D</chain>
<start type="str">
873</start>
<end type="str">
887</end>
<category type="str">
ordered</category>
<location type="str">
intracellular</location>
<pubmed type="str">
31540709</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Contact analysis between AE1 and the headgroups of anionic lipids POPS and PIP2 in the CG-MD simulations of all conformers reveals specific sites of interactions with anionic lipids. These are located in the H1 helix (residues 383–401), cytoplasmic loops between TM4, 5 (residues 506–518), TM6, 7 (residues 593–600), TM12, and 13 (residues 801–830), and the C-terminal region (residues 873–887) &quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-383-401;B-383-401;C-383-401;D-383-401;A-506-518;B-506-518;C-506-518;D-506-518;A-593-600;B-593-600;C-593-600;D-593-600;A-801-830;B-801-830;C-801-830;D-801-830;A-873-887;B-873-887;C-873-887;D-873-887</color_data>
<comment type="str">
</comment>
<accession type="str">
P02730</accession>
<gene type="str">
SLC4A1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Band 3 anion transport protein</protname>
<sequence type="str">
MEELQDDYEDMMEENLEQEEYEDPDIPESQMEEPAAHDTEATATDYHTTSHPGTHKVYVELQELVMDEKNQELRWMEAARWVQLEENLGENGAWGRPHLSHLTFWSLLELRRVFTKGTVLLDLQETSLAGVANQLLDRFIFEDQIRPQDREELLRALLLKHSHAGELEALGGVKPAVLTRSGDPSQPLLPQHSSLETQLFCEQGDGGTEGHSPSGILEKIPPDSEATLVLVGRADFLEQPVLGFVRLQEAAELEAVELPVPIRFLFVLLGPEAPHIDYTQLGRAAATLMSERVFRIDAYMAQSRGELLHSLEGFLDCSLVLPPTDAPSEQALLSLVPVQRELLRRRYQSSPAKPDSSFYKGLDLNGGPDDPLQQTGQLFGGLVRDIRRRYPYYLSDITDAFSPQVLAAVIFIYFAALSPAITFGGLLGEKTRNQMGVSELLISTAVQGILFALLGAQPLLVVGFSGPLLVFEEAFFSFCETNGLEYIVGRVWIGFWLILLVVLVVAFEGSFLVRFISRYTQEIFSFLISLIFIYETFSKLIKIFQDHPLQKTYNYNVLMVPKPQGPLPNTALLSLVLMAGTFFFAMMLRKFKNSSYFPGKLRRVIGDFGVPISILIMVLVDFFIQDTYTQKLSVPDGFKVSNSSARGWVIHPLGLRSEFPIWMMFASALPALLVFILIFLESQITTLIVSKPERKMVKGSGFHLDLLLVVGMGGVAALFGMPWLSATTVRSVTHANALTVMGKASTPGAAAQIQEVKEQRISGLLVAVLVGLSILMEPILSRIPLAVLFGIFLYMGVTSLSGIQLFDRILLLFKPPKYHPDVPYVKRVKTWRMHLFTGIQIICLAVLWVVKSTPASLALPFVLILTVPLRRVLLPLIFRNVELQCLDADDAKATFDEEEGRDEYDEVAMPV</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Anion exchange, Blood group antigen, Cell membrane, Direct protein sequencing, Disease mutation, Elliptocytosis, Glycoprotein, Hereditary hemolytic anemia, Ion transport, Lipoprotein, Membrane, Palmitate, Phosphoprotein, Polymorphism, Reference proteome, Transmembrane, Transmembrane helix, Transport</keywords>
<tm_data type="str">
404-427;436-456;460-476;486-506;519-541;571-591;603-623;664-684;701-719;720-737;761-781;782-800</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-404-427;A-436-456;A-460-476;A-486-506;A-519-541;A-571-591;A-603-623;A-664-684;A-701-737;A-761-800;B-404-427;B-436-456;B-460-476;B-486-506;B-519-541;B-571-591;B-603-623;B-664-684;B-701-737;B-761-800;C-404-427;C-436-456;C-460-476;C-486-506;C-519-541;C-571-591;C-603-623;C-664-684;C-701-737;C-761-800;D-404-427;D-436-456;D-460-476;D-486-506;D-519-541;D-571-591;D-603-623;D-664-684;D-701-737;D-761-800</tm_region>
<term type="str">
bistable region</term>
<proof type="str">
none</proof>
<mproof type="str">
papers</mproof>
</P02730>
<P60058 type="dict">
<id type="str">
8399</id>
<uniprot_acc type="str">
P60058</uniprot_acc>
<pdb_id type="str">
5A6U</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
C</chain>
<start type="str">
5</start>
<end type="str">
23</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
8942632</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;In pure aqueous solution, the peptide is remarkably unfolded. Forming a stable complex with dodecylphosphocholine micelles, it acquires a well-defined α-helix−loop−α-helix secondary structure, with the first helix, highly amphipathic, lying at the micelle surface.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
C-5-23;C-30-40</color_data>
<comment type="str">
It has a regulatory role, somewhat similar to phospholamban and FXYD bitopic proteins.</comment>
<accession type="str">
P60058</accession>
<gene type="str">
SEC61G</gene>
<organism type="str">
Canis lupus familiaris</organism>
<protname type="str">
Protein transport protein Sec61 subunit gamma</protname>
<sequence type="str">
MDQVMQFVEPSRQFVKDSIRLVKRCTKPDRKEFQKIAMATAIGFAIMGFIGFFVKLIHIPINNIIVGG</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Direct protein sequencing, Endoplasmic reticulum, Membrane, Phosphoprotein, Protein transport, Reference proteome, Translocation, Transmembrane, Transmembrane helix, Transport</keywords>
<tm_data type="str">
33-61</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-9-28;A-52-71;A-93-113;A-120-140;A-148-168;A-216-236;A-264-284;A-330-350;A-396-416;A-421-437;B-11-31;C-40-61</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P60058>
<P63010 type="dict">
<id type="str">
8400</id>
<uniprot_acc type="str">
P63010</uniprot_acc>
<pdb_id type="str">
2XA7</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
B</chain>
<start type="str">
1</start>
<end type="str">
12</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
20603002</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;There are three other regions of highly positive electrostatic potential on this surface in addition to the α subunit PtdIns4,5P2-binding site (Figure 5). The first is formed by basic residues from the N terminus of β2 (Lys5, Lys12, Lys26, Lys27, Lys29, Lys36).&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
B-4-12</color_data>
<comment type="str">
Visible in the structure, but without secondary strucutral elements and bound to the surface of the complex.</comment>
<accession type="str">
P63010</accession>
<gene type="str">
AP2B1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
AP-2 complex subunit beta</protname>
<sequence type="str">
MTDSKYFTTNKKGEIFELKAELNNEKKEKRKEAVKKVIAAMTVGKDVSSLFPDVVNCMQTDNLELKKLVYLYLMNYAKSQPDMAIMAVNSFVKDCEDPNPLIRALAVRTMGCIRVDKITEYLCEPLRKCLKDEDPYVRKTAAVCVAKLHDINAQMVEDQGFLDSLRDLIADSNPMVVANAVAALSEISESHPNSNLLDLNPQNINKLLTALNECTEWGQIFILDCLSNYNPKDDREAQSICERVTPRLSHANSAVVLSAVKVLMKFLELLPKDSDYYNMLLKKLAPPLVTLLSGEPEVQYVALRNINLIVQKRPEILKQEIKVFFVKYNDPIYVKLEKLDIMIRLASQANIAQVLAELKEYATEVDVDFVRKAVRAIGRCAIKVEQSAERCVSTLLDLIQTKVNYVVQEAIVVIRDIFRKYPNKYESIIATLCENLDSLDEPDARAAMIWIVGEYAERIDNADELLESFLEGFHDESTQVQLTLLTAIVKLFLKKPSETQELVQQVLSLATQDSDNPDLRDRGYIYWRLLSTDPVTAKEVVLSEKPLISEETDLIEPTLLDELICHIGSLASVYHKPPNAFVEGSHGIHRKHLPIHHGSTDAGDSPVGTTTATNLEQPQVIPSQGDLLGDLLNLDLGPPVNVPQVSSMQMGAVDLLGGGLDSLVGQSFIPSSVPATFAPSPTPAVVSSGLNDLFELSTGIGMAPGGYVAPKAVWLPAVKAKGLEISGTFTHRQGHIYMEMNFTNKALQHMTDFAIQFNKNSFGVIPSTPLAIHTPLMPNQSIDVSLPLNTLGPVMKMEPLNNLQVAVKNNIDVFYFSCLIPLNVLFVEDGKMERQVFLATWKDIPNENELQFQIKECHLNADTVSSKLQNNNVYTIAKRNVEGQDMLYQSLKLTNGIWILAELRIQPGNPNYTLSLKCRAPEVSQYIYQVYDSILKN</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Cell membrane, Coated pit, Endocytosis, Membrane, Phosphoprotein, Protein transport, Reference proteome, Transport</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to unknown</term>
<proof type="str">
high b factor</proof>
<mproof type="str">
papers</mproof>
</P63010>
<P84092 type="dict">
<id type="str">
8401</id>
<uniprot_acc type="str">
P84092</uniprot_acc>
<pdb_id type="str">
2XA7</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
C</chain>
<start type="str">
223</start>
<end type="str">
229</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
20603002</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The second basic region (Lys330, Lys334, Lys350, Lys352, Lys354, Lys356, Lys365, Lys367, Lys368, Lys373) was identified as a putative PtdIns4,5P2-binding site (Collins et al., 2002; Rohde et al., 2002).&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
C-223-229</color_data>
<comment type="str">
</comment>
<accession type="str">
P84092</accession>
<gene type="str">
AP2M1</gene>
<organism type="str">
Rattus norvegicus</organism>
<protname type="str">
AP-2 complex subunit mu</protname>
<sequence type="str">
MIGGLFIYNHKGEVLISRVYRDDIGRNAVDAFRVNVIHARQQVRSPVTNIARTSFFHVKRSNIWLAAVTKQNVNAAMVFEFLYKMCDVMAAYFGKISEENIKNNFVLIYELLDEILDFGYPQNSETGALKTFITQQGIKSQHQTKEEQSQITSQVTGQIGWRREGIKYRRNELFLDVLESVNLLMSPQGQVLSAHVSGRVVMKSYLSGMPECKFGMNDKIVIEKQGKGTADETSKSGKQSIAIDDCTFHQCVRLSKFDSERSISFIPPDGEFELMRYRTTKDIILPFRVIPLVREVGRTKLEVKVVIKSNFKPSLLAQKIEVRIPTPLNTSGVQVICMKGKAKYKASENAIVWKIKRMAGMKESQISAEIELLPTNDKKKWARPPISMNFEVPFAPSGLKVRYLKVFEPKLNYSDHDVIKWVRYIGRSGIYETRC</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell membrane, Coated pit, Endocytosis, Lipid-binding, Membrane, Phosphoprotein, Protein transport, Reference proteome, Transport</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to unknown</term>
<proof type="str">
missing residues, papers</proof>
<mproof type="str">
papers</mproof>
</P84092>
<Q12483 type="dict">
<id type="str">
8402</id>
<uniprot_acc type="str">
Q12483</uniprot_acc>
<pdb_id type="str">
1U5T</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
1</start>
<end type="str">
19</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
18539118</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;a deletion of the basic N-terminal 24 residues (Δ1–24) of VPS22 (construct h)&quot; ... &quot;Deletion of the VPS22-H0 (construct h) significantly decreased the membrane binding to all PIPs tested. Deletion of VPS22- H0 had no apparent effect on binding to PC:PE liposomes&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
Q12483</accession>
<gene type="str">
SNF8</gene>
<organism type="str">
Saccharomyces cerevisiae (strain ATCC 204508 / S288c)</organism>
<protname type="str">
Vacuolar-sorting protein SNF8</protname>
<sequence type="str">
MKQFGLAAFDELKDGKYNDVNKTILEKQSVELRDQLMVFQERLVEFAKKHNSELQASPEFRSKFMHMCSSIGIDPLSLFDRDKHLFTVNDFYYEVCLKVIEICRQTKDMNGGVISFQELEKVHFRKLNVGLDDLEKSIDMLKSLECFEIFQIRGKKFLRSVPNELTSDQTKILEICSILGYSSISLLKANLGWEAVRSKSALDEMVANGLLWIDYQGGAEALYWDPSWITRQL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Coiled coil, Cytoplasm, Endosome, Membrane, Protein transport, Reference proteome, Transport</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to unknown</term>
<proof type="str">
missing residues, papers</proof>
<mproof type="str">
papers</mproof>
</Q12483>
<Q676U5 type="dict">
<id type="str">
8403</id>
<uniprot_acc type="str">
Q676U5</uniprot_acc>
<pdb_id type="str">
5ZYX</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
12</start>
<end type="str">
31</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
31145591</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;the peptide adopts a random coil conformation in aqueous buffer but folds into an α helix in the presence of D8PG micelles.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-1-20</color_data>
<comment type="str">
</comment>
<accession type="str">
Q676U5</accession>
<gene type="str">
ATG16L1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Autophagy-related protein 16-1</protname>
<sequence type="str">
MSSGLRAADFPRWKRHISEQLRRRDRLQRQAFEEIILQYNKLLEKSDLHSVLAQKLQAEKHDVPNRHEISPGHDGTWNDNQLQEMAQLRIKHQEELTELHKKRGELAQLVIDLNNQMQRKDREMQMNEAKIAECLQTISDLETECLDLRTKLCDLERANQTLKDEYDALQITFTALEGKLRKTTEENQELVTRWMAEKAQEANRLNAENEKDSRRRQARLQKELAEAAKEPLPVEQDDDIEVIVDETSDHTEETSPVRAISRAATKRLSQPAGGLLDSITNIFGRRSVSSFPVPQDNVDTHPGSGKEVRVPATALCVFDAHDGEVNAVQFSPGSRLLATGGMDRRVKLWEVFGEKCEFKGSLSGSNAGITSIEFDSAGSYLLAASNDFASRIWTVDDYRLRHTLTGHSGKVLSAKFLLDNARIVSGSHDRTLKLWDLRSKVCIKTVFAGSSCNDIVCTEQCVMSGHFDKKIRFWDIRSESIVREMELLGKITALDLNPERTELLSCSRDDLLKVIDLRTNAIKQTFSAPGFKCGSDWTRVVFSPDGSYVAAGSAEGSLYIWSVLTGKVEKVLSKQHSSSINAVAWSPSGSHVVSVDKGCKAVLWAQY</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Autophagy, Coiled coil, Cytoplasm, Membrane, Phosphoprotein, Polymorphism, Protein transport, Reference proteome, Repeat, Transport, WD repeat</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</Q676U5>
<Q8BH64 type="dict">
<id type="str">
8404</id>
<uniprot_acc type="str">
Q8BH64</uniprot_acc>
<pdb_id type="str">
2QPT</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
1</start>
<end type="str">
18</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
24508342</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The N Terminus Can Insert into Membranes, but Is Not Essential for Membrane Binding and Oligomerization&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
Q8BH64</accession>
<gene type="str">
EHD2</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
EH domain-containing protein 2</protname>
<sequence type="str">
MFSWLKKGGARGQRPEAIRTVTSSLKELYRTKLLPLEEHYRFGSFHSPALEDADFDGKPMVLVAGQYSTGKTSFIQYLLEQEVPGSRVGPEPTTDCFVAVMHGETEGTVPGNALVVDPEKPFRKLNPFGNTFLNRFMCAQLPNQVLESISIIDTPGILSGAKQRVSRGYDFPAVLRWFAERVDLIILLFDAHKLEISDEFSEAIGALRGHEDKIRVVLNKADMVETQQLMRVYGALMWALGKVVGTPEVLRVYIGSFWSQPLLVPDNRRLFELEEQDLFRDIQGLPRHAALRKLNDLVKRARLVRVHAYIISYLKKEMPTVFGKENKKKQLILKLPVIFAKIQLEHHISPGDFPDCQKMQELLMAHDFTKFHSLKPKLLEALDDMLAQDIAKLMPLLRQEELESVEAGVQGGAFEGTRMGPFVERGPDEAIEDGEEGSEDDAEWVVTKDKSKYDEIFYNLAPADGKLSGSKAKTWMVGTKLPNSVLGRIWKLSDVDRDGMLDDEEFALASHLIEAKLEGHGLPTNLPRRLVPPSKRRQKGSAE</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, ATP-binding, Calcium, Cell membrane, Cytoplasm, Endosome, Hydrolase, Membrane, Metal-binding, Nucleotide-binding, Phosphoprotein, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to unknown</term>
<proof type="str">
missing residues, papers</proof>
<mproof type="str">
papers</mproof>
</Q8BH64>
<Q9Q6P4 type="dict">
<id type="str">
8407</id>
<uniprot_acc type="str">
Q9Q6P4</uniprot_acc>
<pdb_id type="str">
4O6C</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,B,C,D,E,F</chain>
<start type="str">
899</start>
<end type="str">
919</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
24505133</pubmed>
<doi type="str">
</doi>
<statement type="str">
</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-133-153;B-133-153;C-133-153;D-133-153;E-133-153;F-133-153</color_data>
<comment type="str">
From DisProt: &quot;Flexible region in the West Nile Virus NS1 protein, corresponds to a disordered loop which is also disordered in the DENV2 NS1 protein. Corresponds to an antigenic region containing a conserved hydrophobic WKxW motif&quot;</comment>
<accession type="str">
Q9Q6P4</accession>
<gene type="str">
GP1</gene>
<organism type="str">
West Nile virus (strain NY-99)</organism>
<protname type="str">
Genome polyprotein</protname>
<sequence type="str">
MSKKPGGPGKSRAVNMLKRGMPRVLSLIGLKRAMLSLIDGKGPIRFVLALLAFFRFTAIAPTRAVLDRWRGVNKQTAMKHLLSFKKELGTLTSAINRRSSKQKKRGGKTGIAVMIGLIASVGAVTLSNFQGKVMMTVNATDVTDVITIPTAAGKNLCIVRAMDVGYMCDDTITYECPVLSAGNDPEDIDCWCTKSAVYVRYGRCTKTRHSRRSRRSLTVQTHGESTLANKKGAWMDSTKATRYLVKTESWILRNPGYALVAAVIGWMLGSNTMQRVVFVVLLLLVAPAYSFNCLGMSNRDFLEGVSGATWVDLVLEGDSCVTIMSKDKPTIDVKMMNMEAANLAEVRSYCYLATVSDLSTKAACPTMGEAHNDKRADPAFVCRQGVVDRGWGNGCGLFGKGSIDTCAKFACSTKAIGRTILKENIKYEVAIFVHGPTTVESHGNYSTQVGATQAGRFSITPAAPSYTLKLGEYGEVTVDCEPRSGIDTNAYYVMTVGTKTFLVHREWFMDLNLPWSSAGSTVWRNRETLMEFEEPHATKQSVIALGSQEGALHQALAGAIPVEFSSNTVKLTSGHLKCRVKMEKLQLKGTTYGVCSKAFKFLGTPADTGHGTVVLELQYTGTDGPCKVPISSVASLNDLTPVGRLVTVNPFVSVATANAKVLIELEPPFGDSYIVVGRGEQQINHHWHKSGSSIGKAFTTTLKGAQRLAALGDTAWDFGSVGGVFTSVGKAVHQVFGGAFRSLFGGMSWITQGLLGALLLWMGINARDRSIALTFLAVGGVLLFLSVNVHADTGCAIDISRQELRCGSGVFIHNDVEAWMDRYKYYPETPQGLAKIIQKAHKEGVCGLRSVSRLEHQMWEAVKDELNTLLKENGVDLSVVVEKQEGMYKSAPKRLTATTEKLEIGWKAWGKSILFAPELANNTFVVDGPETKECPTQNRAWNSLEVEDFGFGLTSTRMFLKVRESNTTECDSKIIGTAVKNNLAIHSDLSYWIESRLNDTWKLERAVLGEVKSCTWPETHTLWGDGILESDLIIPVTLAGPRSNHNRRPGYKTQNQGPWDEGRVEIDFDYCPGTTVTLSESCGHRGPATRTTTESGKLITDWCCRSCTLPPLRYQTDSGCWYGMEIRPQRHDEKTLVQSQVNAYNADMIDPFQLGLLVVFLATQEVLRKRWTAKISMPAILIALLVLVFGGITYTDVLRYVILVGAAFAESNSGGDVVHLALMATFKIQPVFMVASFLKARWTNQENILLMLAAVFFQMAYHDARQILLWEIPDVLNSLAVAWMILRAITFTTTSNVVVPLLALLTPGLRCLNLDVYRILLLMVGIGSLIREKRSAAAKKKGASLLCLALASTGLFNPMILAAGLIACDPNRKRGWPATEVMTAVGLMFAIVGGLAELDIDSMAIPMTIAGLMFAAFVISGKSTDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWKIWMLRMVCLAISAYTPWAILPSVVGFWITLQYTKRGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKKQITVLDLHPGAGKTRRILPQIIKEAINRRLRTAVLAPTRVVAAEMAEALRGLPIRYQTSAVPREHNGNEIVDVMCHATLTHRLMSPHRVPNYNLFVMDEAHFTDPASIAARGYISTKVELGEAAAIFMTATPPGTSDPFPESNSPISDLQTEIPDRAWNSGYEWITEYTGKTVWFVPSVKMGNEIALCLQRAGKKVVQLNRKSYETEYPKCKNDDWDFVITTDISEMGANFKASRVIDSRKSVKPTIITEGEGRVILGEPSAVTAASAAQRRGRIGRNPSQVGDEYCYGGHTNEDDSNFAHWTEARIMLDNINMPNGLIAQFYQPEREKVYTMDGEYRLRGEERKNFLELLRTADLPVWLAYKVAAAGVSYHDRRWCFDGPRTNTILEDNNEVEVITKLGERKILRPRWIDARVYSDHQALKAFKDFASGKRSQIGLIEVLGKMPEHFMGKTWEALDTMYVVATAEKGGRAHRMALEELPDALQTIALIALLSVMTMGVFFLLMQRKGIGKIGLGGAVLGVATFFCWMAEVPGTKIAGMLLLSLLLMIVLIPEPEKQRSQTDNQLAVFLICVMTLVSAVAANEMGWLDKTKSDISSLFGQRIEVKENFSMGEFLLDLRPATAWSLYAVTTAVLTPLLKHLITSDYINTSLTSINVQASALFTLARGFPFVDVGVSALLLAAGCWGQVTLTVTVTAATLLFCHYAYMVPGWQAEAMRSAQRRTAAGIMKNAVVDGIVATDVPELERTTPIMQKKVGQIMLILVSLAAVVVNPSVKTVREAGILITAAAVTLWENGASSVWNATTAIGLCHIMRGGWLSCLSITWTLIKNMEKPGLKRGGAKGRTLGEVWKERLNQMTKEEFTRYRKEAIIEVDRSAAKHARKEGNVTGGHPVSRGTAKLRWLVERRFLEPVGKVIDLGCGRGGWCYYMATQKRVQEVRGYTKGGPGHEEPQLVQSYGWNIVTMKSGVDVFYRPSECCDTLLCDIGESSSSAEVEEHRTIRVLEMVEDWLHRGPREFCVKVLCPYMPKVIEKMELLQRRYGGGLVRNPLSRNSTHEMYWVSRASGNVVHSVNMTSQVLLGRMEKRTWKGPQYEEDVNLGSGTRAVGKPLLNSDTSKIKNRIERLRREYSSTWHHDENHPYRTWNYHGSYDVKPTGSASSLVNGVVRLLSKPWDTITNVTTMAMTDTTPFGQQRVFKEKVDTKAPEPPEGVKYVLNETTNWLWAFLAREKRPRMCSREEFIRKVNSNAALGAMFEEQNQWRSAREAVEDPKFWEMVDEEREAHLRGECHTCIYNMMGKREKKPGEFGKAKGSRAIWFMWLGARFLEFEALGFLNEDHWLGRKNSGGGVEGLGLQKLGYILREVGTRPGGKIYADDTAGWDTRITRADLENEAKVLELLDGEHRRLARAIIELTYRHKVVKVMRPAADGRTVMDVISREDQRGSGQVVTYALNTFTNLAVQLVRMMEGEGVIGPDDVEKLTKGKGPKVRTWLFENGEERLSRMAVSGDDCVVKPLDDRFATSLHFLNAMSKVRKDIQEWKPSTGWYDWQQVPFCSNHFTELIMKDGRTLVVPCRGQDELVGRARISPGAGWNVRDTACLAKSYAQMWLLLYFHRRDLRLMANAICSAVPVNWVPTGRTTWSIHAGGEWMTTEDMLEVWNRVWIEENEWMEDKTPVEKWSDVPYSGKREDIWCGSLIGTRARATWAENIQVAINQVRAIIGDEKYVDYMSSLKRYEDTTLVEDTVL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Activation of host autophagy by virus, ATP-binding, Capsid protein, Disulfide bond, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Glycoprotein, Helicase, Host cytoplasm, Host endoplasmic reticulum, Host membrane, Host nucleus, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host STAT1 by virus, Inhibition of host STAT2 by virus, Membrane, Metal-binding, Methyltransferase, mRNA capping, mRNA processing, Nucleotide-binding, Nucleotidyltransferase, Phosphoprotein, Protease, RNA-binding, RNA-directed RNA polymerase, S-adenosyl-L-methionine, Secreted, Serine protease, Suppressor of RNA silencing, Transferase, Transmembrane, Transmembrane helix, Viral attachment to host cell, Viral immunoevasion, Viral penetration into host cytoplasm, Viral RNA replication, Virion, Virus entry into host cell, Zinc</keywords>
<tm_data type="str">
109-129;249-269;276-290;744-764;771-791;1217-1237;1246-1268;1289-1309;1314-1331;1346-1366;1376-1396;1400-1420;2175-2195;2223-2243;2259-2279;2381-2401;2445-2465;2471-2491</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to unknown</term>
<proof type="str">
missing residues, papers</proof>
<mproof type="str">
papers</mproof>
</Q9Q6P4>
<P29990 type="dict">
<id type="str">
8406</id>
<uniprot_acc type="str">
P29990</uniprot_acc>
<pdb_id type="str">
4O6B</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,B</chain>
<start type="str">
935</start>
<end type="str">
939</end>
<category type="str">
MemMoRF</category>
<location type="str">
extracellular</location>
<pubmed type="str">
24505133</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;A &apos;greasy finger&apos; loop on the connector subdomain forms a prominent part of the hydrophobic protrusion and is mobile, as it is disordered in the DEN2 NS1 structure.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-184-188;B-184-188</color_data>
<comment type="str">
</comment>
<accession type="str">
P29990</accession>
<gene type="str">
NA</gene>
<organism type="str">
Dengue virus type 2 (strain Thailand/16681/1984)</organism>
<protname type="str">
Genome polyprotein</protname>
<sequence type="str">
MNDQRKKAKNTPFNMLKRERNRVSTVQQLTKRFSLGMLQGRGPLKLYMALVAFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRMLNILNRRRRSAGMIIMLIPTVMAFHLTTRNGEPHMIVSRQEKGKSLLFKTEDGVNMCTLMAMDLGELCEDTITYKCPLLRQNEPEDIDCWCNSTSTWVTYGTCTTMGEHRRQKRSVALVPHVGMGLETRTETWMSSEGAWKHVQRIETWILRHPGFTMMAAILAYTIGTTHFQRALIFILLTAVTPSMTMRCIGMSNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYCIEAKLTNTTTESRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFRCKKNMEGKVVQPENLEYTIVITPHSGEEHAVGNDTGKHGKEIKITPQSSTTEAELTGYGTVTMECSPRTGLDFNEMVLLQMENKAWLVHRQWFLDLPLPWLPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPVNIEAEPPFGDSYIIIGVEPGQLKLNWFKKGSSIGQMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILIGVIITWIGMNSRSTSLSVTLVLVGIVTLYLGVMVQADSGCVVSWKNKELKCGSGIFITDNVHTWTEQYKFQPESPSKLASAIQKAHEEGICGIRSVTRLENLMWKQITPELNHILSENEVKLTIMTGDIKGIMQAGKRSLRPQPTELKYSWKTWGKAKMLSTESHNQTFLIDGPETAECPNTNRAWNSLEVEDYGFGVFTTNIWLKLKEKQDVFCDSKLMSAAIKDNRAVHADMGYWIESALNDTWKIEKASFIEVKNCHWPKSHTLWSNGVLESEMIIPKNLAGPVSQHNYRPGYHTQITGPWHLGKLEMDFDFCDGTTVVVTEDCGNRGPSLRTTTASGKLITEWCCRSCTLPPLRYRGEDGCWYGMEIRPLKEKEENLVNSLVTAGHGQVDNFSLGVLGMALFLEEMLRTRVGTKHAILLVAVSFVTLIIGNMSFRDLGRVMVMVGATMTDDIGMGVTYLALLAAFKVRPTFAAGLLLRKLTSKALMMTTIGIVLSSQSTTPETILELTDALALGMMVLKMVRNMEKYQLAVTIMAILCVPNAVILQNAWKVSCTILAVVSVSPLFLTSSQQKTDWIPLALTIKGLNPTAIFLTTLSRTSKKRSWPLNEAIMAVGMVSILASSLLKNDIPMTGPLVAGGPLTVCYVLTGRSADLELERAADVKWEDQAEISGSSPILSITISEDGSMSIKNEEEEQTLTILIRTGLLVISGLFPVSIPITAAAWYLWEVKKQRAGVLWDVPSPPPMGKAELEDGAYRIKQKGILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHKGKRIEPSWADVKKDLISYGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTNAGTIGAVSLDFSPGTSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEIEDDIFRKRRLTIMDLHPGAGKTKRYLPAIVREAIKRGLRTLILAPTRVVAAEMEEALRGLPIRYQTPAIRAEHTGREIVDLMCHATFTMRLLSPVRVPNYNLIIMDEAHFTDPASIAARGYISTRVEMGEAAGIFMTATPPGSRDPFPQSNAPIIDEEREIPERSWNSGHEWVTDFKGKTVWFVPSIKAGNDIAACLSKNGKKVIQLSRKTFDSEYAKTRTNDWDFVVTTDISEMGANFKAERVIDPRRCMKPVILTDGEERVILAGPMPVTHSSAAQRRGRIGRNPKNENDQYIYMGEPLENDEDCAHWKEAKMLLDNINTPEGIIPSMFEPEREKVDAIDGEYRLRGEARTTFVDLMRRGDLPVWLAYRVAAEGINYADRRWCFDGVKNNQILEENVEVEIWTKEGERKKLKPRWLDARIYSDPLALKEFKEFAAGRKSLTLNLITEMGRLPTFMTQKARDALDNLAVLHTAEAGGRAYNHALSELPETLETLLLLTLLATVTGGILLFLMSGRGIGKMTLGMCCIITASILLWYAQIQPHWIAASIILEFFLIVLLIPEPEKQRTPQDNQLTYVVIAILTVVAATMANEMGFLEKTKKDLGLGSIATQQPESNILDIDLRPASAWTLYAVATTFVTPMLRHSIENSSVNVSLTAIANQATVLMGLGKGWPLSKMDIGVPLLAIGCYSQVNPTTLTAALFLLVAHYAIIGPALQAKASREAQKRAAAGIMKNPTVDGITVIDLDPIPYDPKFEKQLGQVMLLVLCVTQVLMMRTTWALCEVLTLATGPISTLWEGNPGRFWNTTIAVSMANIFRGSYLAGAGLLFSIMKNTTNARRGTGNIGETLGEKWKSRLNALGKSEFQIYKKSGIQEVDRTLAKEGIKRGETDHHAVSRGSAKLRWFVERNMVTPEGKVVDLGCGRGGWSYYCGGLKNVREVKGLTKGGPGHEEPIPMSTYGWNLVRLQSGVDVFFIPPEKCDTLLCDIGESSPNPTVEAGRTLRVLNLVENWLNNNTQFCIKVLNPYMPSVIEKMEALQRKYGGALVRNPLSRNSTHEMYWVSNASGNIVSSVNMISRMLINRFTMRYKKATYEPDVDLGSGTRNIGIESEIPNLDIIGKRIEKIKQEHETSWHYDQDHPYKTWAYHGSYETKQTGSASSMVNGVFRLLTKPWDVVPMVTQMAMTDTTPFGQQRVFKEKVDTRTQEPKEGTKKLMKITAEWLWKELGKKKTPRMCTREEFTRKVRSNAALGAIFTDENKWKSAREAVEDSRFWELVDKERNLHLEGKCETCVYNIMGKREKKLGEFGKAKGSRAIWYMWLGARFLEFEALGFLNEDHWFSRENSLSGVEGEGLHKLGYILRDVSKKEGGAMYADDTAGWDTRITLEDLKNEAMVTNHMEGEHKKLAEAIFKLTYQNKVVRVQRPTPRGTVMDIISRRDQRGSGQVGTYGLNTFTNMEAQLIRQMEGEGVFKSIQHLTITEEIAVQNWLARVGRERLSRMAISGDDCVVKPLDDRLPSALTALNDTGKIRKDIQQWEPSRGWNDWTQVPFCSHHFHELIMKDGRVLVVPCRNQDELIGRARISQGAGWSLRETACLGKSYDQMWSLMYFHRRDLRLAANAICSAVPSHWVPTSRTTWSIHAKHEWMTTEDMLTVWNRVWIQENPWMEDKTPVESWEEIPYLGKREDQWCGSLIGLTSRATWAKNIQAAINQVRSLIGNEEYTDYMPSMKRFRREEEEAGVLW</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Activation of host autophagy by virus, ATP-binding, Capsid protein, Clathrin-mediated endocytosis of virus by host, Cleavage on pair of basic residues, Disulfide bond, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Glycoprotein, Helicase, Host cytoplasm, Host endoplasmic reticulum, Host membrane, Host mitochondrion, Host nucleus, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host MAVS by virus, Inhibition of host RLR pathway by virus, Inhibition of host STAT2 by virus, Inhibition of host TYK2 by virus, Ion channel, Ion transport, Membrane, Metal-binding, Methyltransferase, mRNA capping, mRNA processing, Multifunctional enzyme, Nucleotide-binding, Nucleotidyltransferase, Phosphoprotein, Protease, RNA-binding, RNA-directed RNA polymerase, S-adenosyl-L-methionine, Secreted, Serine protease, Suppressor of RNA silencing, Transcription, Transcription regulation, Transferase, Transmembrane, Transmembrane helix, Transport, Ubl conjugation, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral ion channel, Viral penetration into host cytoplasm, Viral RNA replication, Virion, Virus endocytosis by host, Virus entry into host cell, Zinc</keywords>
<tm_data type="str">
102-119;243-260;262-280;726-746;753-773;1196-1220;1227-1245;1270-1290;1292-1310;1318-1338;1347-1367;1371-1391;2148-2168;2193-2213;2229-2249;2348-2368;2414-2434;2460-2480</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
missing residues, papers</proof>
<mproof type="str">
papers</mproof>
</P29990>
<Q05776 type="dict">
<id type="str">
8408</id>
<uniprot_acc type="str">
Q05776</uniprot_acc>
<pdb_id type="str">
4XIZ</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,B</chain>
<start type="str">
60</start>
<end type="str">
74</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
30850607</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The crystal structures display a range of conformations for the Ω loop&quot; ... &quot;conformational changes within the Ω loop and the C-terminal helix are important role for efficient substrate capture and delivery.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-60-74;B-60-74</color_data>
<comment type="str">
&quot;The Ω loop partially covers the substrate/lipid binding covity; thus this loop is inherently immersed into the bilayer.&quot;</comment>
<accession type="str">
Q05776</accession>
<gene type="str">
UPS1</gene>
<organism type="str">
Saccharomyces cerevisiae (strain ATCC 204508 / S288c)</organism>
<protname type="str">
Protein UPS1, mitochondrial</protname>
<sequence type="str">
MVLLHKSTHIFPTDFASVSRAFFNRYPNPYSPHVLSIDTISRNVDQEGNLRTTRLLKKSGKLPTWVKPFLRGITETWIIEVSVVNPANSTMKTYTRNLDHTGIMKVEEYTTYQFDSATSSTIADSRVKFSSGFNMGIKSKVEDWSRTKFDENVKKSRMGMAFVIQKLEEARNPQF</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Lipid transport, Lipid-binding, Membrane, Mitochondrion, Mitochondrion inner membrane, Reference proteome, Transport</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
conformational diversity, papers</proof>
<mproof type="str">
papers</mproof>
</Q05776>
<O60493 type="dict">
<id type="str">
8409</id>
<uniprot_acc type="str">
O60493</uniprot_acc>
<pdb_id type="str">
2MXC</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A</chain>
<start type="str">
94</start>
<end type="str">
107</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
29520003</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;An additional helix connects PPII to α2 and is supported by close Gly94:Phe97, Gly94:Leu98, and Ala96:Arg99 distances. This helix (α*) is missing from the earlier PX structures10, but is functionally significant in that it positions exposed hydrophobic and basic side chains to form the membrane insertion loop (MIL) next to the β1–β2 hairpin loop.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-105-118</color_data>
<comment type="str">
2YPS: missing residues at 98-112</comment>
<accession type="str">
O60493</accession>
<gene type="str">
SNX3</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Sorting nexin-3</protname>
<sequence type="str">
MAETVADTRRLITKPQNLNDAYGPPSNFLEIDVSNPQTVGVGRGRFTTYEIRVKTNLPIFKLKESTVRRRYSDFEWLRSELERESKVVVPPLPGKAFLRQLPFRGDDGIFDDNFIEERKQGLEQFINKVAGHPLAQNERCLHMFLQDEIIDKSYTPSKIRHA</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Alternative splicing, Chromosomal rearrangement, Cytoplasmic vesicle, Direct protein sequencing, Endosome, Isopeptide bond, Lipid-binding, Methylation, Microphthalmia, Phosphoprotein, Protein transport, Reference proteome, Transport, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
missing residues, papers</proof>
<mproof type="str">
papers</mproof>
</O60493>
<P12823 type="dict">
<id type="str">
8410</id>
<uniprot_acc type="str">
P12823</uniprot_acc>
<pdb_id type="str">
1R6R</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,B</chain>
<start type="str">
14</start>
<end type="str">
23</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
25412346</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Here, we found that pep14-23 binds to anionic phospholipids, acquiring α-helical conformation. We then established its tridimensional structure via nuclear magnetic resonance (NMR) spectroscopy&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-14-23;B-14-23</color_data>
<comment type="str">
</comment>
<accession type="str">
P12823</accession>
<gene type="str">
NA</gene>
<organism type="str">
Dengue virus type 2 (strain Puerto Rico/PR159-S1/1969)</organism>
<protname type="str">
Genome polyprotein</protname>
<sequence type="str">
MNDQRKKARNTPFNMLKRERNRVSTVQQLTKRFSLGMLQGRGPLKLFMALVAFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRMLNILNRRRRTAGMIIMLIPTVMAFHLTTRNGEPHMIVSRQEKGKSLLFKTKDGTNMCTLMAMDLGELCEDTITYKCPFLKQNEPEDIDCWCNSTSTWVTYGTCTTTGEHRREKRSVALVPHVGMGLETRTETWMSSEGAWKHAQRIETWILRHPGFTIMAAILAYTIGTTHFQRVLIFILLTAIAPSMTMRCIGISNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYCIEAKLTNTTTDSRCPTQGEPTLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFTCKKNMEGKIVQPENLEYTVVITPHSGEEHAVGNDTGKHGKEVKITPQSSITEAELTGYGTVTMECSPRTGLDFNEMVLLQMKDKAWLVHRQWFLDLPLPWLPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAETQHGTIVIRVQYEGDGSPCKTPFEIMDLEKRHVLGRLTTVNPIVTEKDSPVNIEAEPPFGDSYIIIGVEPGQLKLDWFKKGSSIGQMFETTMRGAKRMAILGDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILIGVIITWIGMNSRSTSLSVSLVLVGIVTLYLGVMVQADSGCVVSWKNKELKCGSGIFVTDNVHTWTEQYKFQPESPSKLASAIQKAHEEGICGIRSVTRLENLMWKQITSELNHILSENEVKLTIMTGDIKGIMQVGKRSLRPQPTELRYSWKTWGKAKMLSTELHNQTFLIDGPETAECPNTNRAWNSLEVEDYGFGVFTTNIWLRLREKQDAFCDSKLMSAAIKDNRAVHADMGYWIESALNDTWKIEKASFIEVKSCHWPKSHTLWSNGVLESEMVIPKNFAGPVSQHNNRPGYHTQTAGPWHLGKLEMDFDFCEGTTVVVTEDCGNRGPSLRTTTASGKLITEWCCRSCTLPPLRYRGEDGCWYGMEIRPLKEKEENLVSSLVTAGHGQIDNFSLGILGMALFLEEMLRTRVGTKHAILLVAVSFVTLITGNMSFRDLGRVMVMVGATMTDDIGMGVTYLALLAAFKVRPTFAAGLLLRKLTSKELMMTTIGIVLLSQSSIPETILELTDALALGMMVLKMVRNMEKYQLAVTIMAILCVPNAVILQNAWKVSCTILAVVSVSPLFLTSSQQKADWIPLALTIKGLNPTAIFLTTLSRTSKKRSWPLNEAIMAVGMVSILASSLLKNDTPMTGPLVAGGLLTVCYVLTGRSADLELERATDVKWDDQAEISGSSPILSITISEDGSMSIKNEEEEQTLTILIRTGLLVISGLFPVSIPITAAAWYLWEVKKQRAGVLWDVPSPPPVGKAELEDGAYRIKQKGILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHKGKRIEPSWADVKKDLISYGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFRTNTGTIGAVSLDFSPGTSGSPIVDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEIEDDIFRKRRLTIMDLHPGAGKTKRYLPAIVREAIKRGLRTLILAPTRVVAAEMEEALRGLPIRYQTPAIRAEHTGREIVDLMCHATFTMRLLSPIRVPNYNLIIMDEAHFTDPASIAARGYISTRVEMGEAAGIFMTATPPGSRDPFPQSNAPIMDEEREIPERSWNSGHEWVTDFKGKTVWFVPSIKTGNDIAACLRKNGKRVIQLSRKTFDSEYVKTRTNDWDFVVTTDISEMGANFKAERVIDPRRCMKPVILTDGEERVILAGPMPVTHSSAAQRRGRIGRNPRNENDQYIYMGEPLENDEDCAHWKEAKMLLDNINTPEGIIPSMFEPEREKVDAIDGEYRLRGEARKTFVDLMRRGDLPVWLAYKVAAEGINYADRRWCFDGTRNNQILEENVEVEIWTKEGERKKLKPRWLDARIYSDPLALKEFAAGRKSLTLNLITEMGRLPTFMTQKARDALDNLAVLHTAEAGGKAYNHALSELPETLETLLLLTLLATVTGGIFLFLMSGRGIGKMTLGMCCIITASILLWYAQIQPHWIAASIILEFFLIVLLIPEPEKQRTPQDNQLTYVIIAILTVVAATMANEMGFLEKTKKDLGLGNIATQQPESNILDIDLRPASAWTLYAVATTFITPMLRHSIENSSVNVSLTAIANQATVLMGLGKGWPLSKMDIGVPLLAIGCYSQVNPITLTAALLLLVAHYAIIGPGLQAKATREAQKRAAAGIMKNPTVDGITVIDLDPIPYDPKFEKQLGQVMLLVLCVTQVLMMRTTWALCEALTLATGPVSTLWEGNPGRFWNTTIAVSMANIFRGSYLAGAGLLFSIMKNTTSTRRGTGNIGETLGEKWKSRLNALGKSEFQIYKKSGIQEVDRTLAKEGIKRGETDHHAVSRGSAKLRWFVERNLVTPEGKVVDLGCGRGGWSYYCGGLKNVREVKGLTKGGPGHEEPIPMSTYGWNLVRLQSGVDVFFVPPEKCDTLLCDIGESSPNPTVEAGRTLRVLNLVENWLNNNTQFCVKVLNPYMPSVIERMETLQRKYGGALVRNPLSRNSTHEMYWVSNASGNIVSSVNMISRMLINRFTMRHKKATYEPDVDLGSGTRNIGIESETPNLDIIGKRIEKIKQEHETSWHYDQDHPYKTWAYHGSYETKQTGSASSMVNGVVRLLTKPWDVVPMVTQMAMTDTTPFGQQRVFKEKVDTRTQEPKEGTKKLMKITAEWLWKELGKKKTPRMCTREEFTKKVRSNAALGAIFTDENKWKSAREAVEDSRFWELVDKERNLHLEGKCETCVYNMMGKREKKLGEFGKAKGSRAIWYMWLGARFLEFEALGFLNEDHWFSRENSLSGVEGEGLHKLGYILREVSKKEGGAMYADDTAGWDTRITIEDLKNEEMITNHMAGEHKKLAEAIFKLTYQNKVVRVQRPTPRGTVMDIISRRDQRGSGQVGTYGLNTFTNMEAQLIRQMEGEGIFKSIQHLTASEEIAVQDWLARVGRERLSRMAISGDDCVVKPLDDRFARALTALNDMGKVRKDIQQWEPSRGWNDWTQVPFCSHHFHELIMKDGRTLVVPCRNQDELIGRARISQGAGWSLRETACLGKSYAQMWSLMYFHRRDLRLAANAICSAVPSHWVPTSRTTWSIHASHEWMTTEDMLTVWNKVWILENPWMEDKTPVESWEEIPYLGKREDQWCGSLIGLTSRATWAKNIQTAINQVRSLIGNEEYTDYMPSMKRFRREEEEAGVLW</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Activation of host autophagy by virus, ATP-binding, Capsid protein, Clathrin-mediated endocytosis of virus by host, Cleavage on pair of basic residues, Disulfide bond, Fusion of virus membrane with host endosomal membrane, Fusion of virus membrane with host membrane, Glycoprotein, Helicase, Host cytoplasm, Host endoplasmic reticulum, Host membrane, Host mitochondrion, Host nucleus, Host-virus interaction, Hydrolase, Inhibition of host innate immune response by virus, Inhibition of host interferon signaling pathway by virus, Inhibition of host MAVS by virus, Inhibition of host RLR pathway by virus, Inhibition of host STAT2 by virus, Inhibition of host TYK2 by virus, Ion channel, Ion transport, Membrane, Metal-binding, Methyltransferase, mRNA capping, mRNA processing, Multifunctional enzyme, Nucleotide-binding, Nucleotidyltransferase, Phosphoprotein, Protease, RNA-binding, RNA-directed RNA polymerase, S-adenosyl-L-methionine, Secreted, Serine protease, Suppressor of RNA silencing, Transcription, Transcription regulation, Transferase, Transmembrane, Transmembrane helix, Transport, Ubl conjugation, Viral attachment to host cell, Viral envelope protein, Viral immunoevasion, Viral ion channel, Viral penetration into host cytoplasm, Viral RNA replication, Virion, Virus endocytosis by host, Virus entry into host cell, Zinc</keywords>
<tm_data type="str">
102-122;239-259;266-280;726-746;753-773;1196-1220;1227-1245;1270-1290;1292-1310;1318-1338;1347-1367;1371-1391;2145-2165;2190-2210;2226-2246;2345-2365;2411-2431;2457-2477</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P12823>
<P61012 type="dict">
<id type="str">
8411</id>
<uniprot_acc type="str">
P61012</uniprot_acc>
<pdb_id type="str">
4KYT</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
B,C</chain>
<start type="str">
1</start>
<end type="str">
16</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
</pubmed>
<doi type="str">
</doi>
<statement type="str">
</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
B-1-16;C-1-16</color_data>
<comment type="str">
</comment>
<accession type="str">
P61012</accession>
<gene type="str">
PLN</gene>
<organism type="str">
Canis lupus familiaris</organism>
<protname type="str">
Cardiac phospholamban</protname>
<sequence type="str">
MDKVQYLTRSAIRRASTIEMPQQARQNLQNLFINFCLILICLLLICIIVMLL</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Acetylation, Direct protein sequencing, Endoplasmic reticulum, Lipoprotein, Membrane, Mitochondrion, Palmitate, Phosphoprotein, Reference proteome, Sarcoplasmic reticulum, Transmembrane, Transmembrane helix</keywords>
<tm_data type="str">
32-52</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
A-49-69;A-90-110;A-254-273;A-296-313;A-758-777;A-788-808;A-829-851;A-898-917;A-931-949;A-965-985;B-32-52;C-32-52</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
missing residues</proof>
<mproof type="str">
homology</mproof>
</P61012>
<P59113 type="dict">
<id type="str">
8412</id>
<uniprot_acc type="str">
P59113</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
147</start>
<end type="str">
152</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
22235127</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;both kindlin and talin have an unstructured loop inserted at the same position of their respective F1 domains. In kindlins, despite their variable lengths, these loops still share some conservedamino acids.&quot; ... &quot;The F1 loop in kindlin is longer than that of talin and NMR analysis revealed no helical propensity in the kindlin-1 F1 loop, instead membrane binding is mediated by a stretch of lysines at the N terminus of the loop.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P59113</accession>
<gene type="str">
FERMT1</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
Fermitin family homolog 1</protname>
<sequence type="str">
MLSSGDLTSASWELVVRVDHANGEQQTEITLRVSGDLHIGGVMLKLVEQMNIAQDWSDYALWWEQKRCWLLKTHWTLDKCGVQADANLLFTPQHKMLRLRLPNAKTVRLRVSFSAVVFKAVADICKVLNIRRPEELSLLKPSSDYCKKKKKKEKNSKEPVIEDILNLESSSTSSGSPVSPGLYSKTMTPTYDPINGTPALSTMTWFGDSPLTEQNCSVLAFSQPPPSPDVLADMFQPRSLVDKAKMNAGWLDSSRSLMEQSIQEDEQLQLRFKYYTFFDLNPKYDAVRINQLYEQARWAVLLEEIDCTEEEMLIFAALQYHISKLSQCAEIQDFATKSEVDEVEAALSSLEVTLEGGKADNTLEDITDIPKLADYLKLFRPKKLMLKACKQYWFVFKDTSIAYFKNKELEQGEPIEKLNLRGCEIVPDVNVSGRKFGIKLLIPVADGMNEVYLRCDHEDQYARWMAACILASKGKTMADSSYQPEVISILSFLKMKNRNSSPLVASSLENMDMNPECLVSPCCAKKHKSKQLAARILEAHHNVAQMPLVEAKLQFIQAWQSLPEFGLTYYLVRFKGSKKDDILGVAYNRLIRIDAVTGIPVTTWRFANMKQWNVNWEIRQVAIEFDQNVSIAFTCLSADCKIVHEYIGGYIFLSTRSKDQNETLDEDLFHKLTGGQD</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell adhesion, Cell junction, Cell membrane, Cell projection, Cytoplasm, Cytoskeleton, Membrane, Phosphoprotein, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P59113>
<Q9BQL6 type="dict">
<id type="str">
8413</id>
<uniprot_acc type="str">
Q9BQL6</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
166</start>
<end type="str">
171</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
22235127</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;both kindlin and talin have an unstructured loop inserted at the same position of their respective F1 domains. In kindlins, despite their variable lengths, these loops still share some conservedamino acids.&quot; ... &quot;The F1 loop in kindlin is longer than that of talin and NMR analysis revealed no helical propensity in the kindlin-1 F1 loop, instead membrane binding is mediated by a stretch of lysines at the N terminus of the loop.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
Q9BQL6</accession>
<gene type="str">
FERMT1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Fermitin family homolog 1</protname>
<sequence type="str">
MLSSTDFTFASWELVVRVDHPNEEQQKDVTLRVSGDLHVGGVMLKLVEQINISQDWSDFALWWEQKHCWLLKTHWTLDKYGVQADAKLLFTPQHKMLRLRLPNLKMVRLRVSFSAVVFKAVSDICKILNIRRSEELSLLKPSGDYFKKKKKKDKNNKEPIIEDILNLESSPTASGSSVSPGLYSKTMTPIYDPINGTPASSTMTWFSDSPLTEQNCSILAFSQPPQSPEALADMYQPRSLVDKAKLNAGWLDSSRSLMEQGIQEDEQLLLRFKYYSFFDLNPKYDAVRINQLYEQARWAILLEEIDCTEEEMLIFAALQYHISKLSLSAETQDFAGESEVDEIEAALSNLEVTLEGGKADSLLEDITDIPKLADNLKLFRPKKLLPKAFKQYWFIFKDTSIAYFKNKELEQGEPLEKLNLRGCEVVPDVNVAGRKFGIKLLIPVADGMNEMYLRCDHENQYAQWMAACMLASKGKTMADSSYQPEVLNILSFLRMKNRNSASQVASSLENMDMNPECFVSPRCAKRHKSKQLAARILEAHQNVAQMPLVEAKLRFIQAWQSLPEFGLTYYLVRFKGSKKDDILGVSYNRLIKIDAATGIPVTTWRFTNIKQWNVNWETRQVVIEFDQNVFTAFTCLSADCKIVHEYIGGYIFLSTRSKDQNETLDEDLFHKLTGGQD</sequence>
<comments type="str">
None</comments>
<keywords type="str">
Alternative splicing, Cell adhesion, Cell junction, Cell membrane, Cell projection, Cytoplasm, Cytoskeleton, Disease mutation, Membrane, Phosphoprotein, Polymorphism, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to disorder</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</Q9BQL6>
<P29274 type="dict">
<id type="str">
8414</id>
<uniprot_acc type="str">
P29274</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
293</start>
<end type="str">
412</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
25692595</pubmed>
<doi type="str">
DOI: 10.1016/j.bpj.2014.12.036</doi>
<statement type="str">
&quot;Our SRCD, SAXS, and NMR results support the previously predicted disordered and extended conformation of the A2A-ct in solution. Interestingly, certain negatively charged membrane-mimicking compounds induce a conformational change, making the C-terminus more helical&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P29274</accession>
<gene type="str">
ADORA2A</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Adenosine receptor A2a</protname>
<sequence type="str">
MPIMGSSVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAAADIAVGVLAIPFAITISTGFCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAIRIPLRYNGLVTGTRAKGIIAICWVLSFAIGLTPMLGWNNCGQPKEGKNHSQGCGEGQVACLFEDVVPMNYMVYFNFFACVLVPLLLMLGVYLRIFLAARRQLKQMESQPLPGERARSTLQKEVHAAKSLAIIVGLFALCWLPLHIINCFTFFCPDCSHAPLWLMYLAIVLSHTNSVVNPFIYAYRIREFRQTFRKIIRSHVLRQQEPFKAAGTSARVLAAHGSDGEQVSLRLNGHPPGVWANGSAPHPERRPNGYALGLVSGGSAQESQGNTGLPDVELLSHELKGVCPEPPGLDDPLAQDGAGVS</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell membrane, Disulfide bond, G-protein coupled receptor, Glycoprotein, Membrane, Polymorphism, Receptor, Reference proteome, Transducer, Transmembrane, Transmembrane helix, Ubl conjugation</keywords>
<tm_data type="str">
8-32;43-66;78-100;121-143;174-198;235-258;267-290</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P29274>
<P60880 type="dict">
<id type="str">
8415</id>
<uniprot_acc type="str">
P60880</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
81</start>
<end type="str">
94</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
30916996</pubmed>
<doi type="str">
https://doi.org/10.1096/fj.201802796R</doi>
<statement type="str">
&quot;In general, the SNAP25 loop region is disordered in solution. Once the cysteine‐rich domain interacts with the membrane, the loop region is transformed from a random coil to an α‐helix, and the hydrophobic residues and the positively charged residues around the cysteine‐rich domain promote membrane association.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
P60880</accession>
<gene type="str">
SNAP25</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
Synaptosomal-associated protein 25</protname>
<sequence type="str">
MAEDADMRNELEEMQRRADQLADESLESTRRMLQLVEESKDAGIRTLVMLDEQGEQLERIEEGMDQINKDMKEAEKNLTDLGKFCGLCVCPCNKLKSSDAYKKAWGNNQDGVVASQPARVVDEREQMAISGGFIRRVTNDARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSNKTRIDEANQRATKMLGSG</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Alternative splicing, Cell junction, Cell membrane, Coiled coil, Congenital myasthenic syndrome, Cytoplasm, Disease mutation, Lipoprotein, Membrane, Mental retardation, Palmitate, Phosphoprotein, Reference proteome, Repeat, Synapse, Synaptosome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P60880>
<P10121 type="dict">
<id type="str">
8416</id>
<uniprot_acc type="str">
P10121</uniprot_acc>
<pdb_id type="str">
6N9B</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
A,B</chain>
<start type="str">
195</start>
<end type="str">
207</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
21543314</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;We show that the membrane-targeting sequence is highly dynamic in solution, independent of nucleotides and directly responds to the density of anionic phospholipids by a random coil-helix transition.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-1-13;B-1-13</color_data>
<comment type="str">
</comment>
<accession type="str">
P10121</accession>
<gene type="str">
FTSY</gene>
<organism type="str">
Escherichia coli (strain K12)</organism>
<protname type="str">
Signal recognition particle receptor FtsY</protname>
<sequence type="str">
MAKEKKRGFFSWLGFGQKEQTPEKETEVQNEQPVVEEIVQAQEPVKASEQAVEEQPQAHTEAEAETFAADVVEVTEQVAESEKAQPEAEVVAQPEPVVEETPEPVAIEREELPLPEDVNAEAVSPEEWQAEAETVEIVEAAEEEAAKEEITDEELETALAAEAAEEAVMVVPPAEEEQPVEEIAQEQEKPTKEGFFARLKRSLLKTKENLGSGFISLFRGKKIDDDLFEELEEQLLIADVGVETTRKIITNLTEGASRKQLRDAEALYGLLKEEMGEILAKVDEPLNVEGKAPFVILMVGVNGVGKTTTIGKLARQFEQQGKSVMLAAGDTFRAAAVEQLQVWGQRNNIPVIAQHTGADSASVIFDAIQAAKARNIDVLIADTAGRLQNKSHLMEELKKIVRVMKKLDVEAPHEVMLTIDASTGQNAVSQAKLFHEAVGLTGITLTKLDGTAKGGVIFSVADQFGIPIRYIGVGERIEDLRPFKADDFIEALFARED</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell inner membrane, Cell membrane, Cytoplasm, Direct protein sequencing, GTP-binding, Membrane, Nucleotide-binding, Receptor, Reference proteome</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</P10121>
<Q9D0J4 type="dict">
<id type="str">
8417</id>
<uniprot_acc type="str">
Q9D0J4</uniprot_acc>
<pdb_id type="str">
1KSG</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
1</start>
<end type="str">
14</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
26488653</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;The combined data verify the requirement of the N-terminal amphipathic helix for membrane binding of Arl2/3 and their interaction with UNC119a.&quot; ... &quot;Surprisingly, and in contrast to what was found for other Arf family members, a nucleotide-independent membrane interaction was detected for Arl2.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
A-2-16</color_data>
<comment type="str">
X-ray structure with GDP does not show the N-terminal helix</comment>
<accession type="str">
Q9D0J4</accession>
<gene type="str">
ARL2</gene>
<organism type="str">
Mus musculus</organism>
<protname type="str">
ADP-ribosylation factor-like protein 2</protname>
<sequence type="str">
MGLLTILKKMKQKERELRLLMLGLDNAGKTTILKKFNGEDVDTISPTLGFNIKTLEHRGFKLNIWDVGGQKSLRSYWRNYFESTDGLIWVVDSADRQRMQDCQRELQSLLVEERLAGATLLIFANKQDLPGALSCNAIQEALELDSIRSHHWRIQGCSAVTGEDLLPGIDWLLDDISSRVFTAD</sequence>
<comments type="str">
None</comments>
<keywords type="str">
3D-structure, Cell cycle, Cytoplasm, Cytoskeleton, GTP-binding, Isopeptide bond, Lipoprotein, Mitochondrion, Myristate, Nucleotide-binding, Nucleus, Phosphoprotein, Reference proteome, Ubl conjugation</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
missing residues</proof>
<mproof type="str">
papers</mproof>
</Q9D0J4>
<O00165 type="dict">
<id type="str">
8418</id>
<uniprot_acc type="str">
O00165</uniprot_acc>
<pdb_id type="str">
</pdb_id>
<bmr_id type="str">
</bmr_id>
<bmr_set type="str">
</bmr_set>
<bmr_entry type="str">
</bmr_entry>
<chain type="str">
</chain>
<start type="str">
261</start>
<end type="str">
273</end>
<category type="str">
MemMoRF</category>
<location type="str">
intracellular</location>
<pubmed type="str">
31400305</pubmed>
<doi type="str">
</doi>
<statement type="str">
&quot;Hematopoietic-substrate-1 associated protein X-1 (HAX-1) is intrinsically disordered.&quot; ... &quot;HAX-1 associates with lipid membranes.&quot; ... &quot;HAX-1 undergoes structural rearrangement upon binding lipid membranes.&quot; ... &quot;Moreover, initial studies suggested that HAX-1 is a mitochondrial membrane protein with residues 261–273 in the C-terminal tail acting as a membrane anchor [1].&quot; ... &quot;We found that HAX-1 adopts partial folding upon binding to membranes and accentuated preference for negatively charged lipids. NMR experiments in lipid membranes show that upon binding, HAX-1 restricts the motion of the cytosolic region of monomeric PLN, shifting its conformational equilibrium.&quot;</statement>
<environment type="str">
</environment>
<tmp_category type="str">
</tmp_category>
<color_data type="str">
</color_data>
<comment type="str">
</comment>
<accession type="str">
O00165</accession>
<gene type="str">
HAX1</gene>
<organism type="str">
Homo sapiens</organism>
<protname type="str">
HCLS1-associated protein X-1</protname>
<sequence type="str">
MSLFDLFRGFFGFPGPRSHRDPFFGGMTRDEDDDEEEEEEGGSWGRGNPRFHSPQHPPEEFGFGFSFSPGGGIRFHDNFGFDDLVRDFNSIFSDMGAWTLPSHPPELPGPESETPGERLREGQTLRDSMLKYPDSHQPRIFGGVLESDARSESPQPAPDWGSQRPFHRFDDVWPMDPHPRTREDNDLDSQVSQEGLGPVLQPQPKSYFKSISVTKITKPDGIVEERRTVVDSEGRTETTVTRHEADSSPRGDPESPRPPALDDAFSILDLFLGRWFRSR</sequence>
<comments type="str">
None</comments>
<keywords type="str">
Acetylation, Alternative splicing, Cell membrane, Cytoplasm, Cytoplasmic vesicle, Direct protein sequencing, Disease mutation, Endoplasmic reticulum, Membrane, Mitochondrion, Nucleus, Phosphoprotein, Polymorphism, Reference proteome, Sarcoplasmic reticulum</keywords>
<tm_data type="str">
</tm_data>
<go_mf type="str">
</go_mf>
<go_cc type="str">
</go_cc>
<go_bp type="str">
</go_bp>
<is_drugbank type="str">
False</is_drugbank>
<tm_region type="str">
</tm_region>
<term type="str">
disorder to order</term>
<proof type="str">
papers</proof>
<mproof type="str">
papers</mproof>
</O00165>
</root>